
Introduction
2

Setting
3

Controls
4

Rules
6

Classes
18

Items
21

Reporting Bugs
23

The Language of the Lissit
24

Modding
31

1

Telepath Tactics: An Introduction

Telepath Tactics is a turn-based tactical RPG featuring a Fire Emblem style, story-driven single player
campaign as well as a 2-to-6 player multiplayer mode inspired in part by Super Smash Brothers.

Telepath Tactics takes a deterministic approach to combat mechanics that is unusual in the world of
strategy RPGs. Attack damage is 100% predictable, and by default, attacks always hit unless there is an
intervening factor (e.g. the attacker having been blinded, or the target having some special defensive
status effect).

To keep things unpredictable, however, the game
borrows liberally from other series (including Fire
Emblem, Disgaea, and Eternal Poison) to provide
a wide variety of available tactics, and brings
some fresh new environmental manipulation
mechanics to the table to boot. Cut through
bushes; push boulders in the way to block off
certain routes; build bridges to create new routes
across water or lava; build barricades and summon
solid state shields to brunt an incoming attack;
destroy walls, doors, and bridges; and place down
traps and explosive charges to snare an unwary
opponent.

Telepath Tactics multiplayer comes with 23
unique character classes, each with its own
strengths, weaknesses, and battlefield roles. The
single player campaign, in turn, features unique,
named characters based off of these classes, each
with their own custom stats and leveling schemes.

You don't have to be content with the selection the
game ships with, however. Telepath Tactics
features extensive mod support that allows you
to create custom multiplayer maps, custom
tilesets, custom destructible objects, custom items,

custom attacks, custom character classes, custom portraits, custom animations, and even whole single
player campaigns filled with unique characters, dialog, and cut scenes.

Read on to learn about Telepath Tactics's setting, learn how the game is controlled, and get a detailed
breakdown of the game's rules.

2

Telepath Tactics Setting

Telepath Tactics takes place in an unusual fantasy world. Some people here possess psychic
abilities—collectively referred to as “psy”—but magic, as such, does not exist in this universe. Nor do
elves, dwarves, or dragons.

...or horses, for that matter. Most of this world's megafauna are insects—giant mantises, giant
scorpions, and giant ant-like creatures called “shadow bugs.” Giant mantises and scorpions are often
used as mounts, and that is precisely what the cavaliers of this world ride.

Our story begins in the Dundar Archipelago, an expanse of thousands of islands stretching south
of the world's equator, originating below the continent of Cera Bella. Due to the sheer size of the
Dundar Archipelago, its isles encompass a huge variety of climates and cultures. The unenviable task
of trying to govern them all falls to the Dundar empire, a republic perhaps most analogous to ancient
Rome.

The Dundar tend to give a wide berth to the lissit, a race of physically imposing bipedal reptiles
native to the isles. The lissit live in clans beyond the reach of the empire; their strict warrior culture
(and great facility with combat) have dissuaded all but the hardiest of imperial governors from
attempting to bring them to heel. Left to their own devices, the lissit tend to ignore human society—and
except in cases of over-aggressive settlement by humans, conflict between the races is rare. All the
same, many humans in the isles look upon the lissit with fear and distrust.

The Dundar Archipelago is rich in a crystalline mineral called vibra, known for vibrating
violently and giving off heat when exposed to a spark. Vibra is effective at heating water, and it is
therefore highly sought after for the purpose of powering steam engines.

Enter the shadowlings, a subterranean race of creatures native to mainland Cera Bella.
Shadowlings can feed upon human suffering; they have been known to stalk humans (or worse) and
psychically torment them in order to feed. The shadowlings are experts at mining vibra, and have a
thriving industry based upon bribing various leaders around the world to permit them to mine lands
outside the Shadowling Republic's borders.

Despite the fact that humans are naturally prey, the murder and enslavement of humans is
nominally illegal among the shadowlings—the practice was outlawed decades ago, after the fall of
Queen Nelis at the conclusion of the Shadowling Civil War. However, enslaving humans has a long
cultural history among the shadowlings, and large segments of shadowling society cling to the old ways
(or simply adopt them to rationalize profiting off of unpaid labor). The Shadowling Republic does not
have the resources or the political will to rigorously enforce these laws outside the borders of the
shadowlands, and especially not in the innumerable, far-flung islands of the Dundar Archipelago.
Meanwhile, money diverted to the right officials ensures that the Dundar will turn a blind eye to any
irregularities. Elections are quite expensive, after all.

3

Telepath Tactics Controls

Telepath Tactics features simple, intuitive mouse controls for controlling the game's camera.

• Click and drag the ground to pan around the battlefield.
◦ If edge panning is enabled in the options, you can also move the mouse cursor to the edges

of the screen to pan around.
• Shift-click to focus the battle camera on the spot clicked.
• Click a spot on the minimap to zoom the battle camera to the corresponding location on the

battlefield.

The remaining mouse controls are designed for quick, streamlined control of your characters.

• Left-click a character on your team to select it.

◦ The game will display blue movement squares representing every space the character can
currently move to.
▪ Mousing over a square shows how many steps it will take to reach the square.
▪ Click on a blue movement square to move the character there.

◦ Whenever a character is selected, you should see a varying set of options in the Actions
Menu. The buttons shown in the Actions Menu are context-dependent; the game will almost
never display an action that that character cannot take! Potential actions in the Actions
Menu include:
▪ Select next character.
▪ Set the selected character to “Done.” (This character will be grayed out and will not be

able to act again this turn.)
▪ Undo the last move or “Done” command.
▪ Rotate in place. (Left-click for clockwise; right-click for counter-clockwise.)
▪ Move this character.
▪ Swim.
▪ Grab an item sack.
▪ Open the character's Inventory.
▪ Open or close a door.
▪ Use a battlefield object.
▪ Grab a flag.
▪ Capture a flag.
▪ Rally (move all characters on your team simultaneously).
▪ End the turn.
▪ Attacks and skills. (These always appear in the bottom row of the Actions menu.)

• Scroll the mouse wheel to cycle through your characters.
• Left-click a character on another team to see every space it can move to on its next turn, shown

in orange squares.

4

• Right-click any character or destructible object to see a detailed summary of all its stats,
elemental resistances, and a summary of all items it is carrying.

• Right-click an empty patch of ground to deselect the current character.
• Right-click blue movement square to remove all movement squares from view.

Telepath Tactics also features keyboard shortcuts for most common activities.

• Arrow keys / WASD – pan around the battlefield.
• Space Bar – autoselect the next available character on your team.
• Shift + Space Bar – autoselect the previous available character on your team.

• Esc – cancel out of the current menu / deselect the current character / advance dialog.
• Z – undo the last character move from this turn. (Telepath Tactics features an undo stack; you

can undo as many move commands as you like. Just keep tapping Z.)
• M – show the current selected character's move tiles.
• C – show a detailed summary of the currently selected character's stats.
• I – toggle the inventory menu for the currently selected character.
• G – grab item sack.
• U – use battlefield object.
• T – talk to adjacent character.
• O – open/close door.
• 1 - 9 – autoselect whatever attack or skill corresponds to the number pressed for the current

selected character.

• Shift + M – toggle the minimap on and off.
• Shift + D – set current character to “Done.”
• Shift + E – end your turn.
• Shift + O – display the Objectives screen containing this battle's win and loss conditions.
• Ctrl + Shift + S – surrender (in single player, this will restart the battle from the beginning).
• Ctrl + Shift + Q – quit to the title screen (only available in single player and in all-CPU

multiplayer matches).

• P – pause the game.
• F1 – open up the Options menu (adjust volume, character walk speed, etc.)
• Ctrl + F – toggle the game between fullscreen and windowed modes.
• F10 – take a screenshot of the screen.
• F12 – take a screenshot of the entire battlefield.
• Ctrl + F12 – take and automatically format a map preview screenshot.

5

Telepath Tactics Ruleset

A. The Start of a Battle
◦ In Multiplayer only: team spawn locations and turn order are each randomized.
◦ All characters that spawn on Turn 0 are added to the battlefield.
◦ Each character begins with full Health and 35% of his/her Maximum Energy.
◦ The first player to move begins by taking his or her turn.

B. The Turn
◦ At the start of any player's turn, the following happens:

1. All of that player's characters that rested (i.e. neither moved nor attacked) on the
previous turn gain 5 Energy; all characters that moved but did not attack on the previous
turn gain 1 Energy.

2. All of that player's characters have their movement counters and counterattack
counters reset.

3. All of that player's characters scheduled to respawn do so; any reinforcements
scheduled to arrive do so.

4. All of that player's characters that are Burning or Poisoned take damage.
5. All of that player's non-flying characters sitting on an environmental hazard take

damage.
6. In Multiplayer only: random item drops occur. (See Item Drops below.)

◦ The player may take Actions with all of his/her remaining characters.
C. Actions

◦ A character can take one of ten possible Actions on its turn:
1. Move (M)

• Every character may move a number of spaces equal to its Speed. (So, for instance, a
character with a speed of 5 can move a total of 5 spaces per turn.)

• Movement is to adjacent spaces only: there is no diagonal movement.
• Characters may not move through other characters.

♦ There is an option called Ally Pass-Through that permits characters of the same
team to move through one another. This is turned off by default. Characters may
never land on the same space.

• Characters do not have to finish moving all of their spaces in one go. A character can
move part of its maximum movement range, then move the remainder later on in the
turn.
♦ For example: Bob, a Spearman with a Speed of 5, can move 5 spaces over the

course of the turn. He can move 2 spaces at the start of the turn, then move
another 3 spaces later on after other characters have moved and/or taken actions.

• Flying characters can move over water and lava; non-flying characters cannot,
unless they cross using a bridge or a special movement skill.

• Flying characters can fly over many types of destructible objects; non-flying
characters can move over bridges, flags and item sacks, but most other destructible
objects are not passable to them.

• Non-flying characters may have their movement limited by elevation differences.
(See Elevation Effects below.)

6

2. Swim (M)
• If a non-flying character ever begins a turn in water or lava, that character cannot

move normally: instead, it must swim.
• A swimming character spends 2 Energy to move a single space, either through water

or lava, or else onto land from water or lava. After swimming that single space, the
character's turn ends.

3. Undo (Z)
• The player can undo character movement; he or she can also undo Movement Skills

(such as Leap and Shadowport).
• Undo becomes available once a character has moved or used a Movement Skill.
• Undo becomes unavailable, however, should any of the following happen:

♦ the character performs a non-Movement Skill;
♦ the character grabs an item or flag;
♦ the character uses an Item; or
♦ the character reveals tiles covered by fog of war (applicable only in battles where

Fog of War is turned on).
4. Rotate (R)

• Character facing matters in Telepath Tactics (see Backstab and Sidestab below);
rotate to switch a character's facing in 90-degree increments.

• Rotate is a free action: it costs no Energy, and does not end the character's turn.
5. Skills and Attacks (1-9)

• Each character has up to eight distinct Skills at its disposal (attacks are considered a
type of Skill).

• In order to use a Skill, the character must have sufficient Energy to pay the Skill's
Cost.

• Using a Skill produces the Skill's effect on all spaces chosen. (Many Skills can self-
target.)

• Every Skill has a property called afterAtk that determines what happens after the
Skill is used. There are four types:
♦ EndTurn – the character's turn ends.
♦ CanMove – the character's turn continues, but the character cannot use any more

Skills.
♦ UseOnce – the character's turn continues, and the character can continue to use

other Skills—but not this one.
♦ Unlimited – the character's turn continues, and the character can continue to use

any Skills, including using this one again.
• Most combat Skills are of the EndTurn variety; which is to say, a character's turn

will usually end after he or she attacks. However, a few Skills (like Bow or Lance)
are classified as CanMove, meaning the character can keep moving after the attack.
♦ For example: Helga the Swordsman has 5 speed. She moves 3 spaces and attacks

with Sword. Sword is an EndTurn attack. Therefore, after her attack completes,
her turn automatically ends.

♦ Another example: Billy the Bowman has 5 speed. He moves 3 spaces and attacks

7

with Bow. Bow is a CanMove attack. After his attack completes, he can still
move 2 more spaces and rotate freely before ending his turn.

• Unlike attacks, movement skills tend to be Unlimited. This means that the character
can continue taking his turn normally, without restrictions.
♦ For example: Amy the Assassin has 9 speed. She moves 5 spaces and uses the

Leap skill (which is Unlimited) to jump over a boulder. She can continue moving
up to 4 spaces; she can Rotate; she can attack; or she can even use Leap again!

• For more information about Skills, see the Skills section below.
6. Grab Item Sack

• If a character ever moves onto the same space as an Item Sack, the character may
grab it and add its items to his or her inventory.

• This is a free action: it costs no Energy, and does not end the character's turn.
7. Inventory (I)

• This option appears only if the character has items in his/her inventory; this lets the
player inspect all items the character is carrying.

• If the character has not attacked this turn, the player may use or drop items.
• This is a free action: it costs no Energy, and does not end the character's turn.

8. Grab Flag
• If a character ever moves onto the same space as a Flag, the character may grab it.
• If an enemy Flag, it will be added to his/her inventory; but if it's his/her team's Flag,

it will automatically return to the flag base.
• This is a free action: it costs no Energy, and does not end the character's turn.

9. Capture Flag
• This option appears only if the character is (1) carrying an enemy flag, (2) is

standing on top of his own flag's base, and (3) his flag's base is currently holding its
flag.

• Selecting this scores a point and automatically returns the enemy flag to its own
base.

• This is a free action: it costs no Energy, and does not end the character's turn.
10. Done

• This ends a character's turn; the character becomes grayed out, and cannot be
selected again during this player's turn.

D. Character Stats
◦ Character stats are as follows:

1. Health
• How much damage the character can take before suffering critical injuries.

2. Energy
• How much energy the character has available to Swim and pay the cost of Skills.

3. Speed
• Determines how many spaces a character can move each turn.

4. Movement type
• By default, this is either “flying” or “land”—in essence, whether the character flies

or not.
• If a non-flying character is in water or lava, however, his/her movement type

8

becomes “swimming” until he/she emerges onto land.
5. Strength

• Determines the power of this character's physical offensive skills.
6. Psy Power

• Determines the power of this character's psy-dependent offensive skills.
7. Psy Defense

• Determines the power of this character's psy-dependent defensive skills (particularly
Shields).

8. Accuracy
• A character's base chance to hit with attacks. This can be modified by blindness, as

well as by a target's dodge percentage, but Accuracy is 100% for all characters by
default.

9. Dodge
• A character's percentage chance to dodge an attack that would otherwise hit.

10. Counter
• The type of counterattack a character can perform.

11. Counter limit
• The maximum number of counterattacks a character can perform before the

beginning of its next turn.
12. Perception

• In battles with Fog of War, this determines how many spaces away a character can
see. (It does not have any effect in battles without Fog of War.)

13. Pushable
• Whether a character can be moved by other characters; this is “true” for all

characters by default.
E. Skills

◦ Skills each belong to one of 13 Elements:
1. Slash

• Slash is a kind of physical element reserved to Attacks.
• Swords, axes, and knives usually deal Slash damage.
• Basic Slash attacks do not have an Energy cost.
• Slash attacks tend to be effective against psy users, as they have an easier time

penetrating psychokinetic shields than other attacks.
2. Pierce

• Pierce is a kind of physical element reserved to Attacks.
• Spears, arrows and crossbow bolts deal Pierce damage.
• Basic Pierce attacks do not have an Energy cost.
• Pierce attacks are often ranged, and deal heavy damage against flying enemies.

3. Crush
• Crush is a kind of physical element reserved to Attacks.
• Maces, fists, and wrenches deal Crush damage.
• Basic Crush attacks do not have an Energy cost.
• Characters heavily armored against Slash or Pierce damage are generally susceptible

to Crush damage.
4. Shield

9

• Shield is an element with both a mental and a physical component.
• Shield attacks generally either restore character health or buff a character. Shield

skills are not offensive in nature.
• Shield skills are the forte of the Psy Healer class.

5. Mental
• Mental is the only element that is entirely non-physical in nature.
• Mind Blast, Feedback, Soul Suck and Feint are examples of Mental attacks.
• Mental skills cannot be dodged or blocked: they always hit, even if the attacker is

Blinded!
• Mental attacks are the specialty of the Mentalist and Spirit classes.

6. Heat
• Heat is one of the four psy elements that works via psychokinetic particle

manipulation.
• Heat attacks usually have a base 50% chance to cause Burning status. (See Status

Effects below.)
7. Cold

• Cold is one of the four psy elements that works via psychokinetic particle
manipulation.

• Cold attacks usually have a base 50% chance to cause Frozen status. (See Status
Effects below.)

8. Shadow
• Shadow is one of the four psy elements that works via psychokinetic particle

manipulation.
• Shadow attacks usually have a base 50% chance to cause Slowed status, as well as

an independent base 50% chance to cause Softened status. (See Status Effects
below.)

9. Light
• Light is one of the four psy elements that works via psychokinetic particle

manipulation.
• Light attacks usually have a base 50% chance to cause Blinded status. (See Status

Effects below.)
10. Create

• Create skills spawn a character or object on the battlefield.
• Create is the primary element of the Engineer class. The Engineer uses it to

construct bridges and barricades, as well as to spawn explosive charges.
11. Movement

• Movement skills move the user to the target space, typically bypassing obstacles in
the process.

• Movement skills supplement a character's ordinary maximum movement.
• The Assassin and Shadowling use Movement skills to reach inaccessible areas.

12. Falling
• This element refers to skills that move other characters around; this includes skills

like Shove, Throw, Kinetic Gust and Gravity Spike.
• Falling attacks deal damage based on falling from heights, and bypass ordinary

character defenses.

10

• Characters can be knocked, pulled or dropped into environmental hazards using
Falling attacks.

13. Explosive
• Explosive attacks are technological in nature (e.g. the detonation of an Engineer's

Charge is Explosive).
• Explosive attacks bypass ordinary character defenses.
• Explosive attacks deal 5x damage to every destructible object in range (including

explosive Charges!) Explosive attacks are far and away the most effective attacks for
destroying walls and bridges.

◦ Attack damage
• Randomized damage does not exist in Telepath Tactics; instead, attack damage is

100% deterministic.
• Every attack has a base damage calculated from the attacker's Strength, Psy Power,

Psy Defense, or some combination of the three. This number is displayed when
mousing over an attack's button in the Skills menu.

• When an attack is launched and it hits a target, the game modifies the base damage
in the following order for each character hit:

1. any elevation bonus or penalty is applied (see Elevation Effects > Effects
on ranged attacks below);

2. any variable range penalty is applied (see Ranged Attacks > Variable range
below);

3. any elemental resistance is applied (see Elemental Resistance below);
4. any backstab or sidestab bonus is applied (see Backstab and Sidestab

below);
5. the final result is rounded to the nearest non-negative integer.

◦ Elemental Resistance
• Characters of different classes have differing levels of resistance to various

elemental attacks, expressed as a percent value.
• A character's resistance percentage describes how much damage will be subtracted

from any attack of that element.
♦ For example: A character with 15% Slash resistance takes 15% less damage from

Slash attacks; a character with 50% Heat resistance takes 50% less damage from
Heat attacks; and so on.

• If a character has a negative resistance percentage, then that character is weak to that
element; the same mathematical rule applies!
♦ For example: A character with -30% Cold resistance gets -30% subtracted from

his damage, and thus takes 30% more damage from Cold attacks.
◦ Backstab

• Hitting a character from behind with most attacks will result in bonus damage; this
represents the target's inability to adequately defend against the attack.

• By default, most attacks deal 150% damage during a backstab. Certain Assassin
attacks can deal substantially more backstab damage, however.

• Shields and other non-offensive abilities do not get a backstab bonus.
◦ Sidestab

11

• The Assassin's attacks get a bonus to damage when hitting a target in the side. Only
the Assassin class gets attacks with a sidestab bonus.

◦ Ranged Attacks
1. Elevation effects

• (See Elevation Effects below.)
2. Variable range

• Certain ranged attacks can hit at multiple ranges.
• As a rule, all attacks get a 15% damage penalty for every space beyond the

minimum range they are targeted, for a maximum damage penalty of 75%.
♦ For example: a Bowman can normally target 2, 3, or 4 spaces away using the

Bow attack, which deals 10 damage by default. 2 spaces is the minimum range
for Bow: thus, at 2 spaces, Bow gets no damage penalty, and deals 10 base
damage. However if Bow is centered 3 spaces away, the attack gets a 15%
penalty, and deals only 8 base damage; at 4 spaces, Bow gets a 30% damage
penalty, and deals only 7 base damage. (If Bow can reach 5 spaces away, as with
a Bowman positioned in the high ground, it gets a 45% damage penalty there.)

◦ Elevation Effects
1. Effects on movement

• Non-flying characters cannot move between tiles with an elevation difference
greater than 1 except via the use of Skills.

2. Falling
• Moving from a high elevation to an elevation more than 1 level lower will cause

non-flying characters to take falling damage.
• Likewise, moving a non-flying character onto a wall tile will cause that character to

fall until he or she hits the ground.
• Falling causes 3 damage per point of elevation fallen; falling damage is cumulative

with normal attack damage.
♦ For example: a Stone Golem throws Helen from an elevation of 4 to an elevation

of 2. Throw deals 4 damage on its own; falling 2 levels of elevation deals an
extra 6 damage. Helen takes 10 damage total.

• Falling 3 or more levels of elevation will cause the character to become Stunned in
addition to any damage suffered.

3. Effects on melee attacks
• A non-flying character may not use attacks with a range of 1 across an elevation

difference greater than 1.
4. Effects on ranged attacks

• Characters get one extra space of range on all ranged attacks targeting areas with
lower elevation.
♦ E.G. Bill the Bowman is on top of a tower with elevation 3, standing in the

northeast corner. To the north and east is grassland with elevation 1; to the west
and south are more castle tiles at elevation 3. He will get a range bonus if
shooting north or east, but not if shooting south or west.

• Ranged attacks get a damage bonus or damage penalty based on the relative
elevation of the attacker and the target. An attacker with the high ground gets a flat

12

30% damage bonus; an attacker with the low ground gets a flat 30% damage penalty.
◦ Counterattacks

• Certain character classes are able to counterattack.
• Counterattacks are range-dependent: a counterattack will not be triggered if it cannot

reach the attacker's space.
♦ For example: Beth the Swordsman has a counterattack that can reach one space.

She is hit with a Bow attack from three spaces away. She cannot reach the
attacker, and thus will not counterattack.

• Counterattacks are Energy-dependent: a counterattack will not be triggered if it
requires more energy than the would-be counterattacker has.

• Counterattacks are not facing-dependent: a counterattacker will turn to face the
attacker automatically when counterattacking.

• Counterattacks are limited to certain number per turn. Once a character has used up
all of his/her counterattacks, that character will not counterattack again until his/her
counterattack counter is reset. (See The Turn above.)
♦ Friendly fire does not trigger a counterattack; characters will never counterattack

a teammate.
◦ Status Effects

• Most status-based effects have a base 50% chance to attach to a character hit with a
status-effect-inducing attack. However, any resistance that the target has to the
attack's element subtracts from this base chance arithmetically.
♦ For example: Pyro Blast, a Heat attack with a base 50% chance to cause Burning

status, hits Sarah. Sarah is a pyrokineticist; as a pyrokineticist, Sarah has 25%
Heat resistance. Her Heat resistance (25) is subtracted from the base chance to
cause burning (50), leaving a 25% chance that Sarah will be set on fire.

♦ Another example: Pyro Blast, a Heat attack with a base 50% chance to cause
Burning status, hits Plato. Plato is a red spriggat; as a red spriggat, Plato has 50%
Heat resistance. His Heat resistance (50) is subtracted from the base chance to
cause Burning (50), leaving a 0% chance that Plato will be set on fire.

♦ A final example: Cryo Blast, a Cold attack with a base 50% chance to cause
Frozen status, hits Plato. Plato is a red spriggat; as a red spriggat, Plato has -25%
Cold resistance. The Cold resistance (-25) is subtracted from the base chance to
cause Frozen (50), leaving a 75% chance that Plato will be frozen solid.

• Unlike other status effects, Heavy status attaches 100% of the time as long as the
target is flying.

• Most attacks inflict only one status effect, but the engine supports attacks that inflict
numerous different status effects at once.

• The types of Status Effects:
1. Weakened

▫ Weakened characters lose 4 physical Strength for 9-12 turns.
2. Strengthened

▫ Strengthened characters gain 2 physical Strength for 5-7 turns.
3. Lucid

13

▫ Lucid characters gain 2 Psy Power and 2 Psy Defense for 5-7 turns.
4. Stunned

▫ Stunned characters cannot move or act for 1 turn.
5. Burning

▫ Burning characters take 4 Heat damage at the start of each turn. Lasts 4-5
turns.

▫ Causing a Burning character to become Frozen or pushing him into water
will remove Burning status.

6. Frozen
▫ Frozen characters cannot move, act, or dodge. Lasts 2-4 turns.
▫ Causing a Frozen character to become Burning or pushing him into lava

will remove Frozen status.
7. Slowed

▫ Slowed characters lose 2 Speed and cannot dodge. Lasts 9-12 turns.
8. Hardened

▫ Hardened characters have their resistance to physical damage (Slash,
Pierce and Crush) increased by 50. Lasts 5-7 turns.

9. Softened
▫ Softened characters have their resistance to physical damage (Slash,

Pierce and Crush) reduced by 25. Lasts 5-7 turns.
10. Shining

▫ Shining characters have their Dodge increased by 25. Lasts 5-7 turns.
11. Blinded

▫ Blinded characters have their attack accuracy reduced by 80, have their
Perception reduced to 1, and cannot dodge attacks. Lasts 5-7 turns.

12. Enthralled
▫ Enthralled characters come under the control of the current player for the

remainder of the turn.
13. Levitating

▫ Levitating characters gain the flying movement type for 1 turn.
14. Heavy

▫ Heavy characters cannot fly, and will take damage from environmental
hazards accordingly.

15. Poisoned
▫ Poisoned characters take 2 damage per turn for 5-7 turns.
▫ Spirits and Golems have no biological circulatory system, and are

therefore immune to Poison damage.
16. Move Bonus

▫ Move Bonus is a positive status effect. A character receiving this status
effect gets a bonus to movement for the remainder of the turn equal to
40% of its speed stat rounded to the nearest integer.

17. Defending

14

▫ The character has a 50% chance to block all attacks until the start of its
next turn.

18. Back Guarded
▫ Enemy attacks against this character do not receive any backstab or

sidestab damage bonuses until the start of this character's next turn.
19. New Turn

▫ The affected character gets a brand new turn if he or she has already
gone; but if this character has not yet gone this turn, nothing happens.

20. Disarm
▫ The target drops whatever item is equipped to his or her weapon hand.

21. -1 Counterattack
▫ The target's counterattack limit drops by 1 for one turn. (If it drops to 0,

the character cannot counterattack.)
F. Environmental Hazards

◦ Certain tiles, such as water or lava, are hazardous to non-flying characters.
◦ Any character that begins a turn on an environmental hazard while not flying takes damage

from the environmental hazard. (By default, water deals 6 drowning damage per turn and
lava deals 20 Heat damage per turn.)

◦ Characters stranded in an environmental hazard cannot move normally and cannot use
Skills: all they can do is access the Inventory, Swim, Rotate, or rest for the turn. Such
characters cannot dodge if attacked.

G. Item Drops
◦ Item drops do not occur in Single Player maps.
◦ In Multiplayer, at the start of every turn, there is a 35% chance that 1-3 item sacks with 1-3

items apiece will spawn at random locations on the battlefield. The further from all player
spawn points a space is, the more likely an item drop is to occur there.

◦ Item sacks cannot spawn on squares with walls or environmental hazards; they can spawn
on bridges, however.

◦ Items have a “commonality” property that determines the likelihood they will appear in a
drop. A higher commonality value denotes greater likelihood of appearing.

◦ The commonality value is linear in nature: an item with a commonality rating of 20 is 4
times more likely to appear than an item with a commonality rating of 5.

H. Experience and Leveling
◦ Characters do not gain experience points or level up in Multiplayer maps.
◦ In Single Player, characters gain:

• 10 base experience points for using an attack on an enemy;
• 10 base experience points for moving a character or object;
• 12 base experience points for creating a character or object;
• 18 base experience points for healing a hurt ally; and
• 35 base experience points for slaying an enemy.

◦ Experience points that you gain from attacking or killing enemies scale depending on your
level difference. For each point of level difference, you either gain 10% more experience (if
the enemy is higher level), to a maximum of 250% normal experience; or 10% less
experience (if the enemy is lower level) to a minimum of 10% normal experience.

15

• For example: Alsace is level 4 and has 15 experience points. She attacks a level 6
enemy using Axe, which costs 0 energy. The enemy survives. This gets her 10
experience points for attacking an enemy, which is then scaled up 20% to 12 due to
the fact that the enemy is 2 levels higher than her. This puts her at 27 experience
points.

◦ After the base experience is scaled, characters gain an experience bonus based on the energy
cost of the skill used; for each point of energy that the skill cost, then character gains an
extra unscaled experience point.

• For example: Emily is level 1 and has 20 experience points. She heals a hurt ally
using Mind Shield, which costs 3 energy. This gets her 18 experience points for
healing her ally, and 3 points extra for Mind Shield's energy cost, for a total of 21.
This puts her at 41 experience points.

◦ A character that reaches 100 experience points gains a level; the character's experience
points are then reduced by 100.

• For example: John is level 1 and has 80 experience points. He attacks and kills an
enemy who is the same level as him using a 0-energy attack. This gets him 10
experience points for the successful attack and 35 points for slaying the enemy, for a
total of 45. This puts him at 125 experience points; he levels up and his experience
points drop to 25, putting him a quarter of the way to level 3.

• For example: Emily is now level 1 and has 41 experience points. On her next turn,
she attack and kills a level 5 enemy using Mind Blast, which costs 2 energy. This
gets her 10 experience points for attacking an enemy and 35 experience points for
killing him, both scaled upward 40% due to their level difference. This gets her 63
experience points. She then gets 2 points extra for Mind Blast's energy cost, for a
total of 65 experience. This puts her at 106 experience points; she levels up to level
2 and her experience points drop to 6.

◦ Whenever a character levels up, he or she gains points in exactly two stats. Which stats the
character improves are chosen at random, though each character has its own unique set of
probabilities of gaining points in different stats.

I. Victory Conditions
◦ Last Man Standing

• A player wins when no enemies at all remain on the battlefield.
◦ Generals

• A player wins when no enemy Generals remain on the battlefield.
◦ Capture the Flag

• A player wins when he or she reaches the match's point goal through capturing
enemy flags.

◦ Defeat Army
• Single Player only. The player wins when one specific enemy army has no characters

remaining on the battlefield.
◦ Defeat the Boss

• Single Player only. The player wins when he or she kills a character that the enemy
was required to protect.

• The player may also be required to protect certain characters; the defeat of any of
these characters means losing the battle.

16

J. Deployment
◦ Sometimes, you will have the option to place your characters on certain spaces at the start of

a battle; this is called deployment mode. During deployment mode, you'll have the option to
switch which characters you are using, and to switch their starting positions around.

◦ To deploy a character, simply click its portrait and drag it onto the blue space you want it
on. (Note that you can never deploy characters to spaces that are not blue!)

◦ Deployment occurs only on single player maps.
K. Score

◦ At the end of a battle, the victor's score and battle stats will be displayed onscreen. Player
score is calculated as follows:
1. Base score (150 for a victory, 0 for a loss);
2. Plus enemies killed times 20;
3. Minus characters lost times 40 (times 20 if multiplayer);
4. Plus total points of damage dealt;
5. Minus total points of damage taken;
6. Plus items grabbed times 10;
7. Minus items dropped times 10;
8. Minus turns taken times 4;
9. Plus any bonus points / minus bonus penalties.

17

Classes

There are 23 base character classes in the Telepath Tactics main campaign (though other
campaigns may introduce new classes not present in this list):

Swordsman (promotes to Fencer)

Lightly armored melee fighters
with multiple counterattacks, they
are good at going toe-to-toe with
single opponents. Swordsmen can
sprint great distances if needed, can

Bandit (promotes to Marauder)

Axe-wielders that eschew armor in
favor of hard-hitting attacks,
bandits can rend enemy armor, hit
everyone around them with a
whirlwind strike, or gamble on

eliminate enemy counterattacks with feints, and
can deal heavy damage with a double strike.

hitting from afar with throwing axes.

Spearman (promotes to Pikeman)

Spearmen are heavily armored and
can hit from two spaces away with
their polearms, or even impale two
enemies in a row. In a pinch, they
can hide behind their massive

Barudit (promotes to Drake)

“Barudit” is lissit for “one who
fights with a barud,” the favored
melee weapon of the lissit. Barudit
are unarmored, fast, and capable of
breaking bones and stunning

shields to try blocking incoming attacks. enemies with their attacks. They can dodge
attacks, but are very weak to cold and heat.

Cavalier (promotes to Mantis
Knight)

Mounted atop giant armored
mantises, cavalry are fast-moving,
with the ability to strike and
continue moving. They can also

Engineer (promotes to Machinist)

Engineers are mediocre fighters
but amazing support units; they
can build barricades and bridges to
access hidden goodies and let you
fight the battle on ground of your

charge enemies from a distance to knock them
back and stun them. Few cavaliers can
counterattack, however.

choosing. They can also lay explosive charges that
destroy nearby walls, bridges, and other objects
when detonated.

18

Bowman (promotes to Bowmaster)

Unarmored units that can shoot and
keep moving, archers are good
ranged harassment units. They can
also arc their shots or equip long
bows for extremely long range

Crossbowman (promotes to
Arbalist)

Ranged units with a weak melee
attack, crossbowmen are hardier
than bowmen and can use an
explosive bolt to destroy objects

attacks that have a chance to miss. on the battlefield and detonate engineers' charges.

Assassin (promotes to Whisper)

The fastest unit in the game,
assassins can get to just about
anywhere they like. Though weak
in melee combat, they can leap
over obstacles, have a high chance

Shadowling (promotes to
Shadowheart)

Shadowlings are psychic predators
who, in nature, feed on the
negative emotions of humans.
They fly and can teleport short
distances. Shadowlings have

to dodge, and can inflict huge backstab damage
upon unarmored enemies.

natural resistance to mental attacks, and can
induce crippling terror in their enemies.

Psy Healer (promotes to
Caduceus)

The dedicated healer class, psy
healers protect wounded units with
psychokinetic shields; high-level
psy healers can also erect static

Mentalist (promotes to
Puppetmaster)

Masters of telekinesis and
telepathy, mentalists can push or
pull targets at a distance, exercise
mind control on enemies, and even

barriers on the battlefield. make themselves levitate.

Pyrokineticist (promotes to
Pyrokurios)

A psy with the ability to set
enemies on fire with pyrokinetic
attacks. At high level, they learn
multiple powerful area-of-effect

Cryokineticist (promotes to
Cryokurios)

A psy that can freeze enemies with
cryokinetic attacks and boost
allies' physical resistance. At high
level, they learn a powerful area-

attacks. of-effect attack.

19

Photokineticist (promotes to
Photokurios)

A psy that can blind enemies with
photokinetic attacks and give allies
a dodge bonus. At high level, they
learn a powerful area-of-effect

Skiakineticist (promotes to
Skiakurios)

A psy that can slow and soften
enemies with skiakinetic attacks,
and give allies greater strength. At
high level, they learn a powerful

attack. area-of-effect attack.

Red Spriggat (promotes to
Greater Red Spriggat)

Fast-moving flyers that can breathe
fire to hit multiple enemies in a
row, or perform hit-and-run attacks
with their claws. Strong to heat,

Frost Spriggat (promotes to
Greater Frost Spriggat)

Fast-moving flyers that can
breathe frigid gas to hit multiple
enemies in a row, or perform hit-
and-run attacks with their claws.

very weak to piercing attacks. Strong to cold, very weak to piercing attacks.

Gold Spriggat (promotes to
Greater Gold Spriggat)

Fast-moving flyers that can breathe
a blinding radioactive beam to hit
multiple enemies in a row, or
perform hit-and-run attacks with

Black Spriggat (promotes to
Greater Black Spriggat)

Fast-moving flyers that can
breathe corrosive, paralytic gas to
hit multiple enemies in a row, or
perform hit-and-run attacks with

their claws. Strong to light, very weak to piercing
attacks.

their claws. Strong to shadow, very weak to
piercing attacks.

Stone Golem (promotes to
Megalith)

Towering automatons that resist
physical attacks. Stone golems can
not only deal heavy damage with
their fists, they are also known to

Bronze Golem (promotes to
Titan)

Towering automatons that can
withstand a lot of punishment. One
arm is a retractable chain with a
spinning saw blade capable of

grab and hurl enemies great distances. Very slow;
weak to light and cold.

ripping through multiple enemies at once. Very
slow.

20

Spirit (promotes to Specter)

A humanoid psychic manifestation, spirits can suck health out of enemies and convert
it into energy, then transfer their energy to allies as needed. They fly
and resist physical attacks, but are quite weak to mental abilities.

Items

There are quite a few items that appear in the main campaign (many of which appear as-is, or
somewhat modified, in item drops in multiplayer). Here are a few:

Name Uses Effect

Adrenaline Pills 3 +40% to max move for the turn, -3 health

Apple 1 +10 health

Bandages 2 +12 health

Battle Primer, Novice 1 +100 exp. if below level 5; else, +50 exp.

Battle Primer, Intermediate 2 +100 exp. if below level 12; else, +50 exp.

Battle Primer, Expert 3 +100 experience points

21

Caffeine Pills 1 cures slowed status, +10% dodge

Eye Drops 2 cures blinded status, +5 health

Focus Pills 2 +12 energy

Lead Ointment 2 +10% light and shadow res. for the rest of the battle

Splint 3 cures weakened status

Thermal Paste 2 +10% heat and cold res. for the rest of the battle

Whet Stone 1 +1 to strength for the rest of the battle

Wine 2 -20% dodge and accuracy, +20% physical res. for the
rest of the battle

22

Reporting Bugs

If you encounter a bug, do not email me—instead, please report all bugs you encounter to the Telepath
Tactics Bugs subforum on SinisterDesign.net! This helps me keep everything nice and organized.

Note that if the game experiences an error, it will automatically generate a .txt log file in Documents >
My Games > Telepath Tactics > Logs, with the filename showing the date and time when the bug
occurred. Make sure to include that log file with your report—it'll help me out a lot with fixing the bug!
(If you don't see a log file there corresponding to the time the bug occurred, you can force the game to
generate a log by hitting the 'L' key.)

23

http://sinisterdesign.net/forum/index.php?board=37.0
http://sinisterdesign.net/forum/index.php?board=37.0

The Language of the Lissit

PRONOUNS
si see I / me
su soo You
sus soose We / us
sulesh soo - lesh' All of us
sek sehk He / him / it
sekat seh - kat' She / her
sekesh seh' - kesh Them / they

TO BE
zetura zeh' - tyoo - rah To be
si zet see zeht I am
su zet soo zeht You are (Imperative: zet = [you] be)
sus zetesh zeh' - tehsh We are
sek azet ah - zeht' He is / it is
sekat azet ah - zeht' She is
sekesh azetesh ah' - zeh - tehsh They are

TO HAVE
ahsura ah' - soo - rah To have
si ahs ahs I have
su ahs ahs You have (Imperative: ahs = [you] have)
sus ahsesh ah - sesh' We have
sek ahsas ahs - ahs' He has
sekat ahsas ahs - ahs' She has
sekesh ahsasesh ahs' - ah - sesh They have

POSSESSIVE PRONOUNS
si-dama see dah' - mah Mine
su-dama soo dah' - mah Yours
sus-dama soose dah' - mah Ours
sulesh-dama soo - lesh' dah' -

mah
All of ours

sek-dama sehk dah' - mah His / its
sekat-dama seh - kat' dah' -

mah
Hers

sekesh-dama seh' - kesh dah' -
mah

Theirs

CONNECTORS
ze zee The

24

zesit zeh' - sit This
so soh A
iss ihs And
rosk rahsk But, however
sor sore Or
asit ah - ssit' For
fes fess Of, about, concerning
isik iss' - ihk If
risik riss' - ihk Then

PREFIXES and SUFFIXES
-at aht (Feminizing suffix)
-esh / -lesh ehsh / lehsh (Pluralizing suffix; -lesh if word ends in a vowel)
ge'- geh (Negating prefix, like the English "un-")

RACE NAMES
lissit lih'-siht A lizardman or lizardman
lissat lih - saht' A female lizardman
ge'filesh geh' - fill - ehsh' A shadowling or shadowlings
thirim duuriss thih' - rim

doo' - riss
A spriggat

hesh hehsh A human or humans
silith duuriss sih' - lith

doo' - riss
A golem

geduur
ambuuriss

geh - dure' ahm -
boohr - ihs'

A spirit / ghost

GREETINGS
ferat duur feh - raht' dure Goodbye (lit. “remain ferocious”)
su si-ari soo see ah' - ree Hello (lit. “you please me”)

YES and NO
isa eeh' - sah Yes (also, used interrogatively: “Do you agree?”)
oso oh' - soh No
esoso eh - soh' - soh Maybe, Perhaps, Possibly

DIRECTIONS
nuurss noohrs North
suurss soohrs South
uurss oohrs East
wuurss woohrs West
esat eh - saht' Right (also: incorrect)
askal ahs - kahl' Left (also: correct)

25

MISCELLANEOUS
aduur ah' - dure Someplace (n.)
aduura ah' - dure - ah To go (v.); to leave (v.)
adyl ah' - dill Still, unmoving, passive (adj.)
ahbas ah' - bahss Bored (adj.)
ahzbulak ahz - bool - ahk' The Dimly Seen Land; the afterlife of lissit myth

(n.)
ahzbu ahz' - boo Difficult to perceive (adj.)
ahzerik ah' - zehr - ihk Angry (adj.)
alesh ah' - lehsh All (adj.)
ambuuriss ahm - boohr -

ihs'
Bright, shining (adj.)

ambuur ahm - boohr' Golden (adj.), gold coin (n.)
ambuura ahm' - byoo - rah To gild (v.); to beautify, as with gold (v.); to press

coins (v.)
ames ah' - mayss Likewise (adj.); in return, in exchange (adj.)
arima ah' - ri - mah To please; to make happy (v.)
arimat ah - ri - maht' Happily, willingly (adv.)
arisit ah' - ri - sit Lover (n., male)
arisat ah' - ri - sat Lover (n., female)
barud bah - roohd' Large, two-handed mace favored by lizardman

warriors (n.)
barudit bah - roohd - eet' One who wields a mace in battle (n.)
barudura bah - roohd' -

yoo - rah
To beat or bludgeon (v.)

blud bloohd' Blood (n.)
bludura bloohd' - yoo -

rah
To bleed (v.)

damat dah' - maht Promise (n.)
damsara dahm' - sah - rah To take (v.)
damura dah' - myoo - rah To be obligated (v.)
desara deh - sah' - rah To obey (v.)
desariss deh - sah' - riss Obedient (adj.)
dom dahm Home (n.)
duur doohr Long-lived, enduring, unending (adj.)
duura dooh' - rah To live, to be in effect (v.)
duurat dooh - raht' Life (n.)
duuriss dooh' - rihs Alive (adj.)
fangiss fan' - giss Tooth, fang (n.)
fangura fan' - gyoo - rah To bite; to eat (v.)
ferat feh - raht' Fierce, ferocious, aggressive (adj.); hot (adj.)
fil fihl A bite or morsel of food (n.)

26

filara fih - lah - rah' To prepare food; to cook (v.)
filesh fih - lehsh' Meat (n.)
firin fih - reen' Zealous, passionate (adj.)
gas gahss Roughly: “the ancestors” (n.)
gasul gah - sool' Seer (n.)
geduur geh - dure' Corpse (n.)
geduura geh' - dooh - rah To kill (v.)
geduuriss geh' - dooh - rihs Dead (adj.)
gefangura geh - fan' - gyoo

- rah
To choke; to fail to eat (v.)

gehsura geh' - soo - rah To lack; to miss (v.)
gekosh geh' - kosh Silence (n.)
gekoshiss geh - kosh' - ihs Silent, quiet (adj.)
gelaan geh - lahn' Small (adj.)
gestat geh - staht' Thief (n.)
getor geh - tore' Weak (adj.)
hass hahss Honor (n.)
hassiss hahss' - ihs Graced with honor (adj.)
hass'kalaw hahss' - kahl -

ow
Lit. "honor hand"; to give someone hass'kalaw is
to bring them honor. (n.)

ho hoh Day (n.)
hesh hehsh Hair or fur (n.)
heshiss hehsh' - ihs Hairy; covered in fur (adj.)
hss hiss In line for succession (also used as an honorific in

place of "resh" for the successor) (adj.)
hsun soon Protector (n.)
hsuniss soon' - ihs Protective (adj.)
hsunura soon' - yoo - rah To protect; to act as protector (v.)
hsunuur soon' - ure Armor (n.)
idgas id - gahss' An expression of indifference; it translates roughly

to “maybe it matters to the skeletons”
ka kah Of the lizardmen, in the sense of all lizardmen as a

united people (adj.)
kalaw kahl - ow' Claw, hand (n.)
karok kah - rahk' Hunger (n.)
karokiss kah - rahk' - ihs Hungry (adj.)
kosh kosh Noise (n.)
koshiss kosh' - ihs Noisy, Loud (adj.)
ko koh Afraid (adj.); cold (adj.)
kot koat Coward (n.)
kri kree Night (n.); darkness (n.)
kta ktah Fast (adj.); quickly (adv.)
laan lahn Big (adj.)

27

lak lahk “The lands of”; region (n.)
omisigah oh - mih - sih -

gah'
a curse word that translates more or less literally to
“my ancestors have cursed me”

predat preh - daht' Hunter (n.)
predura preh - dyoo' - rah To hunt, to stalk (v.)
ra rah War, battle, conflict (n.)
ra'kalaw rah' - kahl - ow Lit. "war hand"; an act of war. (n.)
ra'pet rah' - peht Warrior, fighter (n.)
ra'pis rah' - peese Shield (n.)
rasura rah' - syoo - rah To fight (v.)
resh rehsh "He who is named" -- used to indicate that a

proper name is to follow, like "mister" (n.)
reshat reh - shaht' "She who is named" -- used to indicate that a

proper name is to follow, like "miss" (n.)
sal sahl Cunning, clever (adj.)
sasara sah' - sah - rah To give (v.)
scarl scahrl Red, scarlet (n., adj.), bloody (adj.)
scarlura scahrl' - yoo -

rah
To wound; to cause to bleed (v.)

sera seh - rah' Blade (n.)
serat seh - raht' Sharp (adj.)
seratura seh - raht' - yoo -

rah
To sharpen (v.)

silesh sih' - lehsh Many (n., adj.)
silit sih' - liht A crevice (n.); hidden (adj.)
silith sih' - lihth A boulder (n.); a stone edifice (n.)
silithis sih - lihth' - ihs Patient (adj.)
simura sih - myoo - rah' To be able or capable (v.)
so soh One (n., adj.)
sugeduura sooh - geh' -

dooh - rah'
To die (v.)

susugeduura sooh - sooh -
geh' - dooh - rah'

To commit suicide (v.)

tal tahl High, towering (adj.)
t'ayil tai - yeel' Tail (n.)
thirim thih' - rihm Temperature (n.)
thuur thure Danger (n.)
thuuriss thure' - ihs In danger (adj.)
tor tore Strong (adj.)
zaris zah' - rihs Clan (n.)
zerik zeh' - rihk Anger (n.)
zerikiss zeh' - rihk - ihs Angry (adj.)
zeruka zeh' - ryoo - kah To provoke (v.)

28

zisura zih' - syoo - rah To come (v.); to approach (v.)

GRAMMAR RULES

Direct Objects

If a verb takes a pronoun as a direct object, the direct object should be attached to the front of
the verb with a hyphen.

 For example: "to fight me" would be spoken as "si-rasura"; "to approach him" would be
"sek-zisura"; “follow me” would be “si-desar.”

Possessive Nouns

Connect pronouns and nouns with hyphens and the word "dama" in between to denote
possession:

 For example: "su-dama-zaris" would mean "your clan"; "Siripent-dama-t'ayil" would
mean "Siripent's tail"; and so on.

Past and Future Tense

To denote past or future tense, place “des” or “sid” in front of the verb with a hyphen connector:
“des” for past tense, and “sid” for future tense.

 For example: "su sid-geduur" would mean "you will die"; "si des-zet ko" would mean "I
was afraid."

The tense designator goes before any pronoun direct object that may also be attached to the
verb.

 For example: "sekat sid-sek-ageduur" would mean "she will kill him"; "sekesh des-si-
azisesh" would be "they approached me"; and so on. (But note that "they approached my
home" would be "sekesh des-azisesh si-dama-doma"--the direct object "my home" is not
attached to the verb, since it is not a pronoun.)

USAGE EXAMPLES

 “Alesh ze lissit.”
1. All of the lizardmen.

 “Su gehsesh filesh.”
1. We are short on food.

29

 "Si zet ahbas fes su, iss kri zisas kta."
1. I am bored with you, and night is approaching quickly.

 "Sekesh des-afangesh Ambuur-dama-filesh!"
1. They ate Ambuur's meat!

 "Sek azet so ra'kalaw!"
1. It is an act of war!

 "Isik ze hesh zerukesh sus, risik sus domesh rasura ames."
1. If the humans provoke us, then we must fight back.

World Map

30

Telepath Tactics Modding Guide

Telepath Tactics offers extensive support for modding. This section of the manual will explain how to
mod various aspects of the game.

Where to find the things

There are two primary places where you can find files to modify: in campaign folders, and in
multiplayer rules folders.

• The campaigns that come with the game can be found in their own folders in the game's install
directory, in Data > Campaigns.

• User-created campaigns should be found in their own folders contained in Documents > My
Games > Telepath Tactics > User Campaigns. If you download a player-created campaign,
stick the folder that containing the campaign in this directory. If you create a campaign, create it
in its own folder here.

• The multiplayer rule sets that come with the game can be found in the game's install directory,
in Data > Multiplayer > Default, etc.

• User-created multiplayer rule sets should be found in folders contained in Documents > My
Games > Telepath Tactics > User Multiplayer Rule Sets. If you download a player-created
multiplayer ruleset, stick the folder that contains it in this directory. If you create a rule set,
create it in its own folder here.

Both campaigns and multiplayer rule sets contain the following basic XML files that you can modify:

1. AOEPatterns.xml
2. Attacks.xml
3. CharClasses.xml
4. CharNames.xml
5. ItemClasses.xml
6. ObjClasses.xml
7. PersistentDialog.xml

For a campaign or multiplayer rule set to work, its folder must contain all seven of these files!

In addition to these files, each campaign contains levels, contained within a Maps subfolder; a
Header.png file; and a Data subfolder with any custom assets you're using. Multiplayer mode has maps
as well, although the multiplayer Maps folder exists independently of the individual rulesets.

How to modify the things

First, find a folder for an existing campaign (e.g. The Vengeance of Emma Strider) or multiplayer
ruleset (e.g. Default) that you want to use as a starting point. Next, copy the folder. Paste the copy in

31

Documents > My Games > Telepath Tactics > User Campaigns (if it's a campaign) or Documents >
My Games > Telepath Tactics > User Multiplayer Rule Sets (if it's a ruleset). Rename the copied folder
to whatever you want your campaign or rule set to be called.

Next, start editing the copied files! We'll go through all of the things you can modify now, and where
you go to modify them.

A. Attacks
◦ To mod attacks, open up Attacks.xml in a text editor of your choice.
◦ Note: do not remove the Swim attack from Attacks.xml, or the game will not work properly!
◦ Each attack has the following properties, in order:

1. elem – the attack's element. The game uses this to decide which elemental resistance
applies when the attack is launched. Make sure to capitalize the element's name! (Refer
to the names of the elements in Section E of the Official Ruleset for a reference.)

2. name – the attack's name.
3. d – leave this alone; it's a placeholder attribute that the game uses when calculating

base attack damage. Changing it won't do anything.
4. cst – the attack's Energy cost. If you don't want an Energy cost, set this to 0.
5. minRng – the attack's minimum range. 0 is self-targeting; 1 is one space away; and so

on.
6. maxRng – the attack's maximum range.

• Note: if the attack's element is Move, the range actually defines which spaces the
attacker can move onto. Set accordingly!

7. shkMag – this tells the game how strongly to shake the screen when an attack lands. It
refers to the maximum number of pixels to move the screen around on each frame; I
wouldn't recommend setting this higher than 5. If the attack does not shake the screen,
leave this at 0.

8. shkTim – how many frames to shake the screen for on impact.
9. strD – the first of three attributes for calculating base attack power. This is a multiplier

based on the attacker's strength. If strength is not used to determine the attack's damage,
set this to 0.
• For example: If this is set to 1 and the attacker's strength is 6, the game will add 6 to

the attack's base damage; if this is set to 1.5 and the attacker's strength is 6, the game
will add 9 to the attack's base damage; if this is set to 2 and the attacker's strength is
6, the game will add 12 to the attack's base damage.

10. powD – the second of three attributes for calculating base attack power. This is a
multiplier based on the attacker's psy power. If psy power is not used to determine the
attack's damage, set this to 0.
• For example: If this is set to 0.5 and the attacker's psy power is 6, the game will add

3 to the attack's base damage; if this is set to 2.5 and the attacker's psy power is 6,
the game will add 15 to the attack's base damage.

11. defD – the third of three attributes for calculating base attack power. This is a
multiplier based on the attacker's psy defense. If psy defense is not used to determine the
attack's damage, set this to 0. If the attack is meant to heal, set its element to Shield and
continue to use positive numbers.

32

• For example: Jill is a Psy Healer with a psy defense of 12. She uses a Shield attack
with a defD of 1.5. The attack will heal 18 damage on the target.

12. backstabFactor – the damage multiplier for a striking a character from behind. If this
is set to 1 or less, there is no backstab bonus.

13. sidestabFactor – the damage multiplier for striking a character in the side. If this is set
to 1 or less, there is no sidestab bonus.

14. selfHealFactor – the amount the attacker heals upon successful use of the attack,
expressed as a multiple of the damage dealt. If the character does not gain health, leave
this at 0.

15. selfFocusFactor – the amount of Energy the attacker regains upon successful use of
the attack, expressed as a multiple of the damage dealt. If the character does not gain
Energy, leave this at 0.
• Note: if selfFocusFactor is set below 0, the game will automatically include it as part

of the attack's up-front cost. For example: an attack deals 6 damage, has a cost of 0,
and has a selfFocusFactor of -1. Based on the damage, the game will treat the
attack's cost as 6 (i.e. 6 damage times the -1 selfFocusFactor).

16. accMod – a modifier to the attacker's base accuracy applied with this particular attack.
If you want the attack to be less accurate than normal, use a negative number; if you
want it to be more accurate, use a positive number. If you do not want the attack to
impact the character's chance to hit, leave this at 0.
• For example: Bella has an accuracy of 100. If she uses an attack with an accMod of

-20, she will have her chance to hit reduced to 80. If James, with an accuracy of 90,
uses the same attack, his chance to hit will be reduced to 70.

17. statFX – the effect that you want the attack to confer. (Refer to the names of the status
effects in Section E of the Official Ruleset for a reference.) If you do not want the attack
to confer a status effect, set this to None.
• If this is a Create attack, this attribute has a different job! Instead of telling the game

what status effect to confer, it instead tells the game whether an object being created
has triggers on it.

• If a Create attack is creating a character, or a destructible object with no triggers,
leave this blank. If it's creating a destructible object with a trigger, however, make
sure to put two strings separated by a comma: the type of trigger it has, and the name
of the script it runs if triggered. The types of triggers follow:
♦ Pressure – object is activated as soon as any land-based character steps onto it.
♦ Switch – object must be activated deliberately.

18. affects – this tells the game what the attack affects. For most attacks, this will be
Health. If you want an attack to affect a character's Energy instead, set this to Energy.
You can also buff other stats. An attack can affect any of the following:
• Health
• Energy
• Max Health
• Max Energy
• Speed
• Accuracy

33

• Dodge
• Strength
• Perception
• Psy Power
• Psy Defense
• Slash Res.
• Pierce Res.
• Crush Res.
• Mental Res.
• Heat Res.
• Cold Res.
• Shadow Res.
• Light Res.
• Poison Res.

19. afterAtk – this tells the game what to do after the attack is used. If the turn ends, use
EndTurn; if the character can keep moving but cannot attack again, use CanMove; if the
character can keep moving and use other attacks, use UseOnce; if the character can keep
moving and use any attacks (including continuing to use this one), use Unlimited.

20. AOE – this tells the game what area-of-effect the attack has.
• Use one of the following (unless you've created your own in AOEPatterns.xml):

♦ single – the attack hits only the targeted space. (Used for most attacks.)
♦ column_2 – the attack hits two spaces in a row, extending backward from the

targeted space toward the attacker.
♦ column_3 – the attack hits three spaces in a row, extending backward from the

targeted space toward the attacker.
♦ column_3b – the attack hits three spaces in a row, extending from the attacker

forward. (Used for Shield attacks.)
♦ 3x3 – the attack hits nine spaces in a three-by-three square.
♦ omnidirectional – the same as 3x3, but with a hollow center. (If minRng and

maxRng are both 0, this means the attacker hits every space around him.)
♦ + – hits five spaces in a cross configuration.
♦ omni+ – like omnidirectional above, but with an extra space extending out from

the center of each side.
♦ titan – like 3x3, but with an extra row of 3 spaces on each side.
♦ arc_270-0 – hits three spaces in a 90-degree arc from the character's left side to

the front.
♦ arc_90-0 – hits three spaces in a 90-degree arc from the character's right side to

the front.
♦ arc_270-90 – hits five spaces in a 180-degree arc from the character's left side to

the right side.
♦ row_split – hits the two spaces on either side of the targeted space.
♦ row_3 – hits the targeted space, plus the two spaces on either side of the targeted

34

space.
• Note: in a Create attack, using any AOE setting other than single will create a copy

of the thing being created on every single space in the AOE spread!
21. particles – this tells the game what particles to spray when the attack lands. Use one

of the following:
• Sparks
• Blood
• Poison
• Stone
• Wood
• Water
• Smoke
• Spray
• Heat (will result in both Sparks and Smoke)

22. targeting – this tells the game whether the attack is constrained to the four cardinal
directions, or whether it can be targeted freely. It is recommended that most attacks
leave this set to constrained. To permit free targeting, set to free.

23. moveType – if this attack moves a character, this tells the game what mode the
character moves in.
• There are four moveType settings:

♦ Normal – the character moves in a straight line along the ground.
♦ Parabolic – the character moves in an arc through the air.
♦ Teleport – the character moves in a straight line; this tells the game to ignore

walls that would otherwise block the character's movement.
♦ ToTarget:0 – the character moves adjacent to her target during the attack. If the

character cannot do so, the attack is canceled. The “0” represents the number of
frames to delay the character's movement by (in case the character does not
immediately start moving at the beginning of its attack animation). This setting
should only be used with constrained, non-Move attacks!

• If this is a Create attack, however, this attribute has a different job! Instead of telling
the game how to move a character, it instead tells the game whether it is placing a
character, a normal destructible object, or a bridge. Those three settings are:
♦ CharPlacement
♦ ObjPlacement
♦ BridgePlacement

24. knockback – this tells the game how many spaces away to push the target when the
attack lands. (A negative number tells the game to pull the character closer.) If you do
not want knockback, leave this set to 0.

25. creates – if this is a Create attack, place the charname or classname (if a character
with a charname of random) of the character being created here. If creating a
destructible object in this way, use the spritetype instead. (For instance: if you want to
create a Wooden Barricade, put BarricadeWood.)
• If this is not a Create attack, you will most likely want to leave this set to none. If

you put something else in here for a non-Create attack, it will signal to the game that

35

it should spawn the named character or object in place of any character killed by the
attack. (For instance: if you have an attack called Petrify, you can set the creates
property to Boulder to make the game replace any characters killed by Petrify with a
boulder.)

• For non-Create attacks, rather than specifying a particular character or object, you
can set creates to -CLONE- to simply replace the dead character with a new copy of
itself.

26. createdOnTeam – this tells the game whether thing being created is added to the
attacker's team, or whether it is an object without a team. If the former, set this to
MyTeam; if the latter, set this to Objects.
• If this is a non-Create attack and createdOnTeam is not set to either MyTeam or

Objects, the game will spawn the character or object on the same team as the
character that was just killed. If this attack's creates property is set to none, just leave
this blank.

27. dependsUpon – name a second attack; this attack will be unavailable to use if the
character does not have the second attack as well. For instance: when creating the attack
Swordstorm, if dependsUpon is set to Sword, no character with Swordstorm will be able
to use it unless they also have Sword available to use.
• This is for use on advanced skills which require the character to be equipped with a

particular kind of weapon granting a basic attack. (Split Shot, for instance,
dependsUpon Bow, which is itself provided via the grantsAtk attribute of an
equippable item. So if the character has no bow equipped, the character therefore
cannot use Split Shot.)

• If dependsUpon is left blank, the attack will be available regardless of what other
attacks the character is able to perform.

28. impactFrame – an integer that counts the number of frames after the end of all
animations where the attack actually lands. This tells the game exactly when to initiate
screenshake and pop up the animated health bar, etc.
• Because most attacks appear to hit their targets a few frames before the end of their

animations, this is usually a negative number! Count the number of frames before
the end the attack hits, then multiply by -3. This will usually give you something
close to the right number.

29. soundAndFX – this contains information about sound effects and visual effects to
play during the attack animation. There are two types of tags that get used here,
delimited by commas: SFX[...] and VFX[...]
• SFX – the SFX[...] tag allows you to add a sound effect to the animation. There are

two parameters that need to be included within the square brackets, delimited by a
colon: the name of the mp3 file to be played, and the frame number on which it is to
start playing.
♦ Usage example: SFX[Swoosh Sword:0] will play Swoosh Sword.mp3 from the

Data > Sounds directory beginning on frame 0 of the attack.
• VFX – the VFX[...] tag allows you to add a visual effect to the animation. There are

three parameters that need to be included within the square brackets, each delimited
by a colon: the Name of the Animation to Use, the Rule Governing Where the

36

Animation Appears, and the Frame Number on which it is to start playing. There is
also an optional Forward/Back Left/Right Offset parameter, with the Forward/Back
and Left/Right offset values delimited by a vertical bar (one of these: |).

• There are five Rules Governing Where the Animation Appears for VFX; they are:
OnSelf, OnTargets, TowardTargets, OnCenter, and TowardCenter. They behave
as follows:
♦ Usage example: VFX[MindBlast:OnSelf:12] will play the MindBlast.png

animation from the Data > Characters > Attacks > _VFX directory, it will play
that animation on top of the attacking character, and it will start playing it on
frame 12 of the attack.

♦ Usage example: VFX[Slash:OnTargets:18] will play the Slash.png animation
from the Data > Characters > Attacks > _VFX directory, it will play a copy of
that animation on every space where the attack hits a target, and it will start
playing them all on frame 18 of the attack.

♦ Usage example: VFX[Crossbow Bolt:TowardTargets:35] will play the
Crossbow Bolt.png animation from the Data > Characters > Attacks > _VFX
directory, it will place the animation(s) on top of the attacking character and
move it toward the target(s) over the duration of the animation, and it will start
playing and moving the animation(s) on frame 35 of the attack.

♦ Usage example: VFX[DarkVortex_1:OnCenter:21] will play the
DarkVortex_1.png animation from the Data > Characters > Attacks > _VFX
directory, it will place the animation on top of the space where the attack tile was
clicked, and it will start playing it on frame 18 of the attack.

♦ Usage example: VFX[LightBombMissile:TowardCenter:54:30|0] will play the
LightBombMissile.png animation from the Data > Characters > Attacks >
_VFX directory, it will place the animation 30 pixels in front of the attacking
character and move it toward the space where the attack tile was clicked over the
duration of the animation, and it will start playing it on frame 54 of the attack.

▫ Note: there are three attack frames for every frame of animation in a
Telepath Tactics sprite sheet. Thus, if a VFX animation has only one
frame, it will travel to its target over the course of three in-game frames.
Similarly, if an animation or sound effect is set to play on attack frame
18, it will start alongside the sixth frame of the attack animation.

▫ Note: the Forward/Back Left/Right Offset uses integers. To offset an
animation behind the attacker, use a negative value for the first offset; to
offset it in front, use a positive value. To offset an animation to the left of
the attacker, use a negative value for the second offset; to offset it to the
right, use a positive value.

30. desc – a short description of the attack that shows up in-game when mousing over the
attack button.

B. Characters and Destructible Objects
◦ To mod characters and character classes, open up CharClasses.xml in a text editor of your

choice. To mod destructible objects, open up ObjClasses.xml in a text editor of your choice.
◦ Each character or object is enclosed in a Char or Obj tag, respectively. Each has the

37

following properties, in order:
1. charname – the character's name. First name and last name are delimited by a forward

slash (e.g. John/Smith), not separated by a space. For characters without a last name,
simply leave a forward slash on the end of the first name (e.g. Thallion/). If creating a
destructible object, you can simply leave the charname as none. If you set this to
random, the game will automatically generate a character name at random using the
character's race and sex attributes.

2. spritetype – the name used in the spritesheets for this character. (Since a spiked
barricade uses BarricadeSpiked.png for its in-game graphic, its spritetype is
BarricadeSpiked. Since Emma Strider uses the female Swordsman sprite set in Data >
Characters, her spritetype is Swordsman_F; and so on.)
• Note: if the character's sex is “Either,” leave off the _M / _F suffix; the game will

add one on its own based on the sex it selects.
3. portrait – the character's default portrait within in Data > Characters > _Portraits,

minus the .png file extension.
• Note: if the character's sex is “Either,” leave off the _M / _F suffix; the game will

add one on its own based on the sex it selects.
4. race – the character's race; used for random name generation and racial item

restrictions.
5. sex – the character's sex; used for random name generation. Can be Male, Female,

Either or None. (If set to Either, the game will randomly select either Male or Female.)
6. classname – the character's class; used for class item restrictions. For destructible

objects, this is displayed in-game in lieu of the object's name (which is always “none”).
7. move – movement type. Can be either land or flying.
8. hurtParticle – what kind of particles does this character or emit when damaged? This is

typically set to Sparks, Stone or Wood; all the particles you can use are listed under the
“particles” attribute under attacks above.

9. shadowType – tells the game which image to load for the character or object's shadow.
If shadowType is Small, the game will load ShadowSmall.png out of the Objects folder;
if Big, it will load ShadowBig.png; and so on.

10. shadowY – a number used to adjust the shadow's positioning beneath a character or
object.

11. charY – a number used to adjust the character or object's vertical placement on its tile.
• A higher number means lower placement.
• By default, all Telepath Tactics characters use a charY value of 16; most non-bridge

destructible objects are positioned slightly higher, with a charY value of 12; walls
and doors get a charY of 32, meaning that they are positioned with their bottom
edges flush with the bottom of the tile; and bridges are positioned even lower, with a
charY value of 36. Experiment to see what looks best with your custom sprites!

12. lighting – custom global lighting values that trump the global lighting Condition for
whatever level this character or object spawns in. Takes three parameters delimited by
commas: Red, Green and Blue values. Just as with Global Lighting parameters, these are
decimal numbers that can be anywhere from 0 to 2.0, with 1.0 being 100% color value
(0,0,0 will make the character pitch black; 1.6,1.2,0.7 will make the character glow
orange; and so on).

38

• Note: Leave this blank if you want the character to be lit normally!
13. ctr – counterattack; place the name of an attack that the character or object knows if you

want it to be able to counterattack with it.
14. onDeath – place the name of an attack that you want the character or object to trigger

upon death (e.g. Explode). This can be any attack, not just one that the character
ordinarily has available to use!

15. defaultAtkAnim – when a character attacks, the game automatically looks for a custom
animation with the same name as the attack. If it can't find one, it instead loads the
defaultAtkAnim.
• You can find all available animations in Data > Characters and Data > Characters

> Attacks.
• Psy attacks tend to reuse the same generic “casting” animation, so you'll want to

stick Cast in for most psy-heavy characters.
• Never use an animation that doesn't exist for defaultAtkAnim; it can freeze the

game. If you aren't sure, just use Rest.
16. atk1 – defines a starting attack that the character knows naturally, without the need for

equipment. Use the name of an attack that exists in Attacks.xml. There are eight slots for
these; leave unused slots blank.

17. atk2 – see above.
18. atk3 – see above.
19. atk4 – see above.
20. atk5 – see above.
21. atk6 – see above.
22. atk7 – see above.
23. atk8 – see above.
24. hp – maximum health.
25. en – maximum energy.
26. spd – speed; the maximum number of spaces moveable per turn.
27. ctrLimit – counter limit; the maximum number of counterattacks a character can launch

before the start of its next turn.
28. dodge – percentage chance to dodge non-Mental attacks; out of 100.
29. str – physical strength.
30. per – perception.
31. psyP – psy power; strength of character's offensive psy.
32. psyD – psy defense; strength of character's defensive psy.
33. prcRes – pierce resistance; out of 100.
34. slshRes – slash resistance; out of 100.
35. crshRes – crush resistance; out of 100.
36. mnRes – mental resistance; out of 100.
37. htRes – heat resistance; out of 100.
38. cdRes – cold resistance; out of 100.
39. ltRes – light resistance; out of 100.
40. shRes – shadow resistance; out of 100.
41. poiRes – poison resistance; out of 100.
42. acc – accuracy; base percentage chance to land the character's attacks (i.e. assuming that

39

the target has 0 dodge, attacks have no accMod, and the attacker is not blinded). Out of
100.

43. lvl – the character's level; 0 or higher. Used for level item restrictions.
44. exp – the character's experience points. (Use a number between 0 and 100.)
45. pushable – whether knockback abilities can move the character or object. Can be set to

either true or false.
46. tags – this is a sort of catch-all category for miscellaneous modifiers and effects that

don't fit elsewhere (status effect immunities and markers that change the game's AI
behaviors are all handled with tags). A tag is just a string, sometimes followed by
parameters. (If there are parameters, separate them from the tag name using a comma; if
there are multiple parameters, delimit each parameter with colons). Individual tags, in
turn, are delimited by a forward slash. Scroll down to the Using Character Tags
subsection below for a complete listing of individual character tags and their attributes.

♦ Usage example: tags="Passive/TargetValue,1.5/ModDmgForMoveType,
+:2:flying" will add three tags to the character: one which sets that character's AI
routines to passive, one which causes other AI characters to treat that character
as a more valuable target, and one which gives the character a small damage
bonus against flying characters.

◦ That's all you need to do to create a destructible object or enemy character. To create a
character that the player can use, however, you'll need to do one more thing: add leveling
information.

• Leveling Info
• To add character leveling info, make sure there's an <OnLevelUp></OnLevelUp>

tag within the Char tags. Each OnLevelUp tag should have the following properties:
1. charname – this must match the character's name from the Char tag exactly.
2. hp – probability of gaining maximum health on level up; a number from 0 to

20, with a higher number meaning higher probability.
3. en – probability of gaining maximum energy on level up; a number from 0 to

20, with a higher number meaning higher probability.
4. ctrLimit – probability of gaining an extra counterattack on level up; a

number from 0 to 20, with a higher number meaning higher probability.
5. dodge – probability of gaining extra dodge on level up; a number from 0 to

20, with a higher number meaning higher probability.
6. acc – probability of gaining extra accuracy on level up; a number from 0 to

20, with a higher number meaning higher probability.
7. str – probability of gaining strength on level up; a number from 0 to 20, with

a higher number meaning higher probability.
8. psyP – probability of gaining psy power on level up; a number from 0 to 20,

with a higher number meaning higher probability.
9. psyD – probability of gaining psy defense on level up; a number from 0 to

20, with a higher number meaning higher probability.
10. prcRes – probability of gaining pierce resistance on level up; a number from

0 to 20, with a higher number meaning higher probability.
11. slshRes – probability of gaining slash resistance on level up; a number from

40

0 to 20, with a higher number meaning higher probability.
12. crshRes – probability of gaining crush resistance on level up; a number from

0 to 20, with a higher number meaning higher probability.
13. mnRes – probability of gaining mental resistance on level up; a number from

0 to 20, with a higher number meaning higher probability.
14. htRes – probability of gaining heat resistance on level up; a number from 0

to 20, with a higher number meaning higher probability.
15. cdRes – probability of gaining cold resistance on level up; a number from 0

to 20, with a higher number meaning higher probability.
16. ltRes – probability of gaining light resistance on level up; a number from 0

to 20, with a higher number meaning higher probability.
17. shRes – probability of gaining shadow resistance on level up; a number from

0 to 20, with a higher number meaning higher probability.
• To have the character learn new attacks upon reaching certain levels, sticking attack

names and level numbers into the space between the OnLevelUp tags, delimited by
commas.
♦ Usage example: <OnLevelUp … >Shove,2,Feint,3</OnLevelUp> will cause

the character to automatically learn the Shove attack upon reaching level 2 and
learn the Feint attack upon reaching level 3. (Don't actually use ellipses in your
tag; those are just standing in for all the properties above in order to save space.)

◦ Using Character Tags
• Within the context of XML formatting, a tag refers to something enclosed by

brackets (these things: <>). Within the context of character attributes, however,
“tags” refers to strings (sometimes with attached parameters) that attach to
characters and destructible objects and tell the game to treat them differently. Most
tags are either AI-related, or else concern immunity from status effects. To use a tag
with parameters, separate the parameters from the tag name with a comma, then
delimit the parameters with colons. A full listing of the game's supported tags
follows:

1. Health, Energy, Max Health, Max Energy, Speed, Dodge, Strength,
Perception, Psy Power, Psy Defense, Accuracy, Pierce Res., Slash Res.,
Crush Res., Mental Res., Heat Res., Cold Res., Light Res., Shadow Res.,
and Poison Res. – each of these directly modifies the corresponding
character stat. Takes one parameter: a positive or negative integer to be added
to the affected stat.
▫ Note: these tags only modify a stat at the moment a character spawns. If a

character receives one of these tags after spawning, it will not affect his
or her stats until the next battle.

2. ID – gives a character a unique identifying number, to be used with the
special character ID[]. Takes one parameter: the number to give.

3. IgnoreArmy – an AI tag with one parameter: a non-negative integer
corresponding to an existing army number. This causes the tagged character
to ignore the existence of all characters belonging to a particular army; they
will be treated as neither enemies nor allies.

41

4. LevelUp – a tag that tells the game to make the tagged character silently gain
one or more levels as soon as he or she spawns on the battlefield. This is a
quick and easy way to create tougher versions of existing enemy types, as
well as ones that provide more experience points. One parameter: a positive
integer, Levels To Gain.
▫ Usage example: LevelUp,4 will turn a level 1 enemy into a level 5

version of that enemy.
5. ModCostForAttack – a tag that tells the game to modify the energy cost for

the tagged character to use the named attack. Takes three parameters:
operator type, amount, and attack name.
▫ Usage example: ModCostForAttack,%:75:Cryo Blast will decrease the

cost to use Cryo Blast to 75% of its normal amount for the tagged
character.

6. ModDmgForAttack – a tag that tells the game to modify the character's
attack damage whenever it uses the named attack. Takes three parameters:
operator type, amount, and attack name.
▫ Note: the modification occurs before resistance is applied in the damage

calculation.
▫ Usage example: ModDmgForAttack,+:1:Mind Blast will increase the

character's damage by 1 whenever he/she attacks with Mind Blast.
7. ModDmgForClass – a tag that tells the game to modify the character's

attack damage based on the Class of the target. Takes three parameters:
operator type, amount, and class name.
▫ Note: the modification occurs before resistance is applied in the damage

calculation.
▫ Usage example: ModDmgForClass,+:5:Cavalier will increase the

character's damage by 5 against cavaliers.
8. ModDmgForMoveType – a tag that tells the game to modify the character's

attack damage based on the Move type of the target. (This tag only works
against characters, not destructible objects.) Takes three parameters: operator
type, amount, and move type.
▫ Note: the modification occurs before resistance is applied in the damage

calculation.
▫ Usage example: ModDmgForMoveType,*:2:flying will double the

character's damage against flying characters.
9. ModDmgForRace – a tag that tells the game to modify the character's attack

damage based on the Race of the target. Takes three parameters: operator
type, amount, and race.
▫ Note: the modification occurs before resistance is applied in the damage

calculation.
▫ Usage example: ModDmgForRace,-:3:Shadowling will decrease the

character's damage by 3 against characters whose race is Shadowling.
10. ModDmgForTag – a tag that tells the game to modify the character's attack

42

damage based on whether the target has a tag of a certain type. Takes three
parameters: operator type, amount, and tag name.
▫ Note: the modification occurs before resistance is applied in the damage

calculation.
▫ Usage example: ModDmgForTag,%:50:Passive will halve the

character's damage against characters with a Passive tag.
11. ModRngForAttack – a tag that tells the game to modify the character's

maximum range whenever it uses the named attack. Takes three parameters:
operator type, amount, and attack name.
▫ Usage example: ModRngForAttack,*:1.4:Bow will increase the

character's maximum range with the Bow attack by 40%.
12. Passive – an AI tag; no parameters. This affects the tagged character's AI

routines. The character will not move during its turn unless it detects an
enemy within its move-and-attack range.

13. Promoted – a tag with one parameter: an integer corresponding to the
number of levels the character possessed prior to its promotion. This causes
experience scaling to work properly with characters who have been promoted
and had their level reset to 1.
▫ Usage example: Promoted,19 will treat a character as 19 levels higher

than his or her Level stat for purposes of experience scaling (representing
the fact that the character was promoted to a new class upon reaching
level 20).

14. RangeBonus – a tag which increases the range of all ranged attacks (i.e.
attacks which otherwise have a maximum range greater than 1). One
parameter: the number of spaces to extend the range of ranged attacks.
▫ Usage example: RangeBonus,1 will increase the maximum range of all

the tagged character's ranged attacks by 1. For a crossbowman, this
would mean that Crossbow and Powder Bolt can hit up to one space
further away, but Bayonet cannot.

15. Selectable – a tag that is only used in CharClasses.xml in multiplayer
rulesets. When a character class is given this tag, it lets the game know that
that class can be added to players' army rosters. (Classes that lack this tag
will not be available to add to the players' army rosters, but may nonetheless
be used in maps, or be created during battles via certain attacks.)

16. TargetValue – an AI tag with one parameter: a number (including decimals)
that acts as a value multiplier. This affects the tagged character's perceived
value in other characters' AI routines. A higher value means that other
characters controlled by the AI are more likely to choose this character as a
target for skills and attacks; a lower value means the character is more likely
to be ignored.
▫ Usage example: TargetValue,2 will double the character's perceived

value as a target.
17. TreatAsArmy – an AI tag with one parameter: a non-negative integer

corresponding to an existing army number. This tag is solely for destructible

43

objects; it causes the AI to treat the object as if it were a character belonging
to the designated army.
▫ Usage example: TreatAsArmy,0 will cause the tagged destructible object

to be treated as a character within Army 0 (which, by default, means that
all non-allied CPU-controlled armies will consider it an attack target).

18. Trigger – a tag solely for destructible objects which gives the tagged object a
new trigger. This is mainly intended for use in ObjClasses.xml, as a way to
consistently tie triggers to certain objects (traps, for example). Takes two
parameters: trigger type and script name.
▫ Usage example: Trigger,Pressure:Snare Trap will cause the tagged

destructible object to employ a pressure trigger that runs a script named
Snare Trap when activated.

C. Conditions
◦ Conditions set the starting conditions for a map when it is loaded. They can affect anything

from global lighting to fog of war, permadeath to victory conditions.
◦ Types of Conditions

1. Ally Pass-Through – one parameter, true or false. (False by default.) If set to true,
characters from the same army will be able to move through one another's spaces.

♦ Usage example: <Condition>Ally Pass-Through,true</Condition> will turn
on ally pass-through for this battle.

2. Attack Bridges – one parameter, true or false. If false, causes the AI to ignore bridges
as attack targets.

3. Defeat Army – two parameters: the number of the army whose victory condition this
affects, and the enemy army that the first army must defeat. Without this condition in
place, each army can win a kill-all victory only by wiping out every enemy army on the
battlefield; with this condition in place, the army specified in parameter 1 need only
defeat the one army specified in parameter 2 to win.

4. Defeat Scene – one parameter: scene name. Rather than just restarting the battle, make
the game proceed to the specified scene upon the player's defeat.

5. Delay Maneuvers – two parameters, army number and number of turns. Causes any AI-
controlled player in charge of the designated army to automatically skip each of its turns
until it has passed the designated turn number.

♦ Usage example: <Condition>Delay Maneuvers,1,3</Condition> will cause
the enemy AI controlling army 1 to skip its first three turns.

6. Deployment – one parameter, true or false. (False by default.) If set to true, the player
will have the opportunity to drag characters onto the battlefield, and swap them around
between possible spawn locations.
• Note: There is an optional second parameter, Deployment Music. This tells the game

to play a particular track during deployment; once deployment is over, the game
reverts to playing the music designated in the map's musictrack attribute.

7. Exploration Mode – one parameter, true or false. (False by default.) If set to true, the
game makes it so the player's characters can move around continuously without ending
the turn. (It turns off features like undo, rotate and end turn, makes it so none of your
characters lose steps while moving, restricts access to most attacks, and gives everyone

44

a move range of 12, in addition to automatically turning off Kill-All Victory (see
below).

♦ Usage example: <Condition>Exploration Mode,true</Condition> will turn
on exploration mode in this scene.

8. Fatigue – takes two parameters: army number and starting fatigue level. Army Number
is the army whose fatigue you want to set; you can use -1 to have the game set fatigue
for all armies on the battlefield. Starting Fatigue Level is a number between 0 and 1
representing the percentage of a character's maximum Energy that will be missing at the
start of a battle.
• Starting energy level is the inverse of starting fatigue: 0 is 0% fatigue, meaning that

the characters in the chosen army will start with full Energy; 0.3 is 30% fatigue,
meaning that characters in that army will start with 70% Energy; 1 is 100% fatigue,
which means 0% starting Energy; and so on.
♦ Usage example: <Condition>Fatigue,0,0.52</Condition> will cause army 0's

characters to start the battle with 48% Energy.
9. Fog of War – one parameter, true or false. (False by default.) If set to true, the

battlefield will be covered by a fog of war.
♦ Usage example: <Condition>Fog of War,true</Condition> will turn on fog of

war for this battle.
10. Global Lighting – one parameter, name of lighting preset; if “Custom” is used as the

lighting preset name, there are three extra parameters: red, green and blue with values
between 0 and 1. Available global lighting presets include:
• Cave
• Daylight
• Dawn
• Evening
• Grayscale
• Indoors (default)
• LavaDark
• LavaLight
• Night
• Overcast
• Sepia

♦ Usage example: <Condition>Global Lighting,Night</Condition> will cause
the battlefield to be lit as if it were nighttime.

♦ Usage example: <Condition>Global Lighting,Custom,0.7,0.7,1</Condition>
will reduce red and green values by 30% across the battlefield, causing
everything to be lit dark blue.

11. Go First – one parameter, army number. This army goes first in this battle. Single-
player only.

12. Kill-All Victory – one parameter, true or false. (True by default.) If set to false, the
game will not end the battle as soon as it detects that no enemies remain on the
battlefield.

13. New Army – three parameters, army name, human or CPU, and army color. Each of

45

these parameters is a string. For human or CPU, write Human or CPU; any other value
for this parameter will be interpreted as establishing a CPU player. (For available army
colors, see Set Army Color below.)
• Note: If this is the first New Army condition in the map, it will apply to army 2; the

next New Army condition will create settings for army 3, and so on.
• Note: You can use an optional fourth parameter to give this army a roster. Use slash

notation for character names, and delimit each character with a colon.
♦ Usage example: <Condition>New Army,The Green

Hunters,Human,Green</Condition> will create a new army called The Green
Hunters; the army will be human-controlled, and characters in this army will use
a Green team color palette.

♦ Usage example: <Condition>New Army,Traitors,CPU,Black,
General/Vile:Leela/Vile:Emilio/Vile</Condition> will create a new army
called Traitors; the army will be computer-controlled, characters in this army
will use a Black team color palette, and the roster will be populated by General
Vile, Leela Vile, and Emilio Vile.

14. Permadeath – one parameter, true or false. (True by default.) If set to false, characters
that reach 0 health will automatically come back in the next scene.

15. Post-Battle Looting – one parameter, true or false. (False by default.) If set to true, the
game will check for any loose item sacks lying around as soon as the battle ends. If it
finds one or more, if the player won and it's a campaign battle, the game will enter
exploration mode with a prompt to the player to grab loot and then click the Leave
Battlefield button in the Actions Menu.

16. Protect Char – two parameters, army number and name of character to protect. The
designated army must protect the named character throughout the battle. If the named
character dies, the designated army will lose the battle immediately!

♦ Usage example: <Condition>Protect Char,0,Captain Duddly</Condition>
will make it so the player loses if Captain Duddly dies.

♦ Usage example: <Condition>Protect Char,1,General Evil</Condition> will
make it so the enemy loses if General Evil dies.

17. Roster Number – one parameter, roster number to pull characters from for Army 0
when filling in “FromPlayerRoster” spots on the map. (By default, this is set to roster 0.)

18. Set Army Alliance – two parameters, army number and name of alliance. The
designated army becomes a member of the named alliance. To ally two or more armies,
just set each of them to the same alliance.

♦ Usage example: <Condition>Set Army Alliance,0,Imperials</Condition>
and <Condition>Set Army Alliance,2,Imperials</Condition> will ally armies
0 and 2 under the alliance name “Imperials.”

19. Set Army Color – two parameters, army number and name of color. The designated
army's color is changed to the color in the second parameter. Color names the game will
accept include:
• Red
• Blue
• Green

46

• Yellow
• Violet
• Pink
• Orange
• White
• Black

20. Set Army Name – two parameters, army number and name of army. The designated
army's name is changed to the name in the second parameter.

♦ Usage example: <Condition>Set Army Name,0,Emma's
Raiders</Condition> will rename army 0 to “Emma's Raiders.”

21. Space Bonus – two or more parameters: y position, x position, and an unlimited number
of additional parameters specifying stat bonuses or penalties for characters who stand on
that space. Every 2 parameters you add on after the first two specifies an additional
bonus or penalty: the third / fifth / seventh etc. will be the name of the stat, and the
fourth / sixth / eighth etc. will be the amount of the bonus / penalty. Stat names the game
will accept for purposes of bonuses and penalties include:
• Perception
• Strength
• Psy Power
• Psy Defense
• Accuracy
• Dodge
• Resistance – this affects every type of resistance simultaneously.
• Slash Res.
• Pierce Res.
• Crush Res.
• Mental Res.
• Heat Res.
• Cold Res.
• Shadow Res.
• Light Res.
• Poison Res.

♦ Usage example: <Condition>Space Bonus,4,6,Dodge,10,Pierce
Res.,10,Strength,-1</Condition> will cause the space 4 from the top of the map
and 6 right from the left edge to give whatever character stands on it a 1 point
Strength penalty, but +10 to Dodge percentage and +10 to Pierce Resistance
percentage.

22. Victory Scene – one parameter: scene name. Overwrite nextbattle with the specified
scene.

23. Weather – one parameter, weather type. Creates a weather overlay of the chosen type.
Available weather types include:
• Rain
• Snow
• Fire

47

• Embers
• Pollen

♦ Usage example: <Condition>Weather,Fire</Condition> will cause fiery
sparks to rain down from the sky.

♦ Usage example: <Condition>Weather,Embers</Condition> will cause fiery
embers to float upwards.

D. Dialog
◦ Character dialog occurs within maps (though it can also be stored in PersistentDialog.xml).

To edit dialog, use the map editor and enter “Edit Dialog” mode by pressing the speech
bubble icon.

◦ Dialog in a map is organized into distinct conversations, each with its own dialog trigger.
◦ Right-click an empty spot in the dialog map to create a new conversation branch.
◦ To edit a conversation branch, left-click the box that represents it. An edit window will

open. In the window, you can:
1. Change the trigger and trigger parameters.

• Note: all branches in a conversation must share the same trigger and trigger
parameters. If you change the trigger or trigger parameters for one branch in a
conversation, the editor will stick that branch on the end of a new conversation!

2. Change the name of the speaker.
3. Change the body of text dialog.
4. Add, edit, or remove scripted Actions.

• Actions are little scripts that can be placed on a conversation branch to make
different things happen in the game when the player reaches that branch. Types of
Script Actions are listed below.

5. Add, edit, or remove Replies.
• Replies determine what happens when the player clicks to continue the conversation.

If there is only one reply, it won't be displayed visually in the conversation; if there
is more than one reply, all replies will be displayed for the player to select from.

◦ When you're finished editing, just close the edit window; your changes will be reflected in
the dialog map.

◦ Special Characters in Dialog Text
1. typing -- will create an em dash (a single, long dash that looks like this: —)
2. typing -N- will skip a couple of lines to start a new paragraph
3. typing -NN- will skip four lines
4. typing -TURN- will display the total number of player turns passed, counting each

player's turn individually. (This corresponds to the turn parameter in an OnTurn trigger.)
5. typing -FULLTURN- will display the total number of times that every player on the

battlefield has gone.
6. typing -Y- will cause the game to substitute the Y coordinate of the character who

triggered the dialog (for dialog which is character-triggered).
7. typing -X- will cause the game to substitute the X coordinate of the character who

triggered the dialog (for dialog which is character-triggered).
8. typing -NAME- will substitute the first name of the character who triggered the dialog

(for dialog which is character-triggered).

48

9. typing -LNAME- will substitute the last name of the character who triggered the dialog
(for dialog which is character-triggered).

10. typing -FNAME- will substitute the full name of the character who triggered the dialog
(for dialog which is character-triggered).
• Note: -FNAME- can be nested within -VAL-, -STR- and -STAT-.

11. typing -ATTACKER- will substitute the full name of the character who is attacking as
of the moment the dialog is triggered (for dialog which is triggered during an attack).

12. typing -SEED- will substitute the value of the current seed in the game's random
number generator (RNG).

13. typing -STARTSEED- will substitute the value of the RNG seed the game started the
current scene with.

14. typing BNAME[x] in a script action will substitute the branch number for whatever
conversation branch is named x. This will let you navigate to branches by name using
the game's “GoTo” script actions (see “Types of Script Actions” below).
• Usage example: GoTo BNAME[Rejected Offer] will look for a conversation

branch named Rejected Offer. If the game finds it, it will use that branch's number in
lieu of the special character, then go to that branch number; if no branch has that
name, however, the game will use -1 instead and end the conversation.

15. typing ID[x] in a script action will tell the game to look for the character with an ID tag
of the number x. This can be used in any script action parameter where you'd ordinarily
use a character's name, but will not work in any other context!
• Usage example: MoveChar ID[12],6,6 will move whichever character has been

tagged with ID 12 to the coordinates 6 , 6.
16. typing ITEMVAL[x] will substitute the default monetary value of whatever item is

named x.
17. typing R[x-y] in a script action will tell the game to randomly select a whole number

between x and y (with both x and y being possible candidates for selection). Both x and y
must be non-negative integers.
• Usage example: You rolled a R[1-6]. will select a whole number between 1 and 6

and display it in place of “R[1-6]”. Both 1 and 6 are numbers that might be selected.
18. typing -VAL:Blah- will cause the game to replace it with the value of the custom

variable named “Blah”; obviously, you'll be typing the name of an actual custom
variable there, not Blah (unless you created a variable named Blah for some reason). If
you haven't set a variable by that name yet, the game will just display a 0 by default.
• This special character can be used in Replies and Actions as well.
• Usage example: You have -VAL:Money- gold left. will read as “You have X gold

left,” where X is the value of the custom variable Money. If Money is currently 55,
for instance, the dialog will read “You have 55 gold left.”

19. typing -STR:Blah- will cause the game to replace it with the string stored under the
“Blah” custom variable name.
• This special character can be used in Replies and Actions as well.
• Usage example: We are allied with -STR:Ally-. will read as “We are allied with

X,” where X is the string stored in the custom variable Ally. If Ally is currently
storing “The Resistance”, the dialog will read “We are allied with The Resistance.”

20. typing -ARR:Array Name,Get From- will cause the game to replace it with the

49

specified array entry stored in the named custom array.
21. typing -STAT:Character Name,Stat- will replace “Character Name,Stat” with the

value of the named stat for the named character.
• You can use every stat supported by the IfStatGoTo action for this; see IfStatGoTo

below. If the game can't find the named character on the battlefield or you don't
correctly type the name of an actual stat, the game will just display a 0 by default.

• This special character can be used in Replies and Actions as well.
• Usage example: Emma has -STAT:Emma Strider,Slash Res.-% resistance to

Slash damage will read as “Emma has X% resistance to Slash damage,” where X is
Emma Strider's current Slash Resistance. If her Slash Resistance is currently 10, for
instance, the dialog will read “Emma has 10% resistance to Slash damage.”

◦ Types of Triggers
1. OnLoaded – takes no parameters. Causes dialog to trigger the moment the level is

fully loaded. Use this with various script actions followed by EndConvImmediately to
alter the level before the player can see it happening.

2. OnTurn – takes one parameter, an integer. Causes dialog to trigger at the very start of
the turn represented by the parameter. (If -1 is used, it will trigger on any turn.)

♦ Usage example: OnTurn 0 will cause the conversation to trigger at the start
of turn 0 (i.e. at the very beginning of the battle, before the player moves);
OnTurn 1 will cause the conversation to trigger at the start of turn 1 (i.e.
before the second player moves for the first time).

3. OnTalk – this allows for a player-triggered conversation. It takes two parameters: the
names of two characters. When one character is adjacent to the other, the Talk option
will appear in the actions box. If the player clicks it, it will trigger the conversation.
• Note: if you want any character to be able to initiate the conversation, you can use

-ANY- for the first parameter.
♦ Usage example: OnTalk Emma Strider,Grant Winter will cause the game

to present the Talk option when these characters are adjacent. If the player clicks
Talk, the associated conversation will begin.

4. OnReachingSpace – this triggers a conversation as soon as a character reaches a
defined space on the battlefield. It takes between two and four parameters: the Y
coordinate, the X coordinate, the name of which character must trigger the conversation
(if it can only be triggered by a particular character), and the team number of the
character who must trigger the conversation (if it can only be triggered by a character of
a particular team).
• Note: if you want to make it so only destructible objects can trigger the conversation,

set the required team number to 99; if you want to make so only characters (not
destructible objects) can trigger the conversation, set it to -99.
♦ Usage example: OnReachingSpace 4,6 will trigger the conversation when

any character ends a move on the coordinates 4,6.
♦ Usage example: OnReachingSpace 4,6,Emma Strider will trigger the

conversation when Emma Strider (and only Emma Strider) ends a move on the
coordinates 4,6.

♦ Usage example: OnReachingSpace 4,6,,0 will trigger the conversation when

50

any character on team 0 (the player's team) ends a move on the coordinates 4,6.
5. OnOpeningDoor – this triggers a conversation as soon as a door at a defined space on

the battlefield is opened. It takes two parameters: the Y coordinate of the door, and the X
coordinate of the door.

♦ Usage example: OnOpeningDoor 4,6 will trigger the conversation when a
door at the coordinates 4,6 is opened.

6. OnLockedDoor – this triggers a conversation as soon as a character attempts to open a
locked door at a defined space on the battlefield without having a key. It takes two
parameters: the Y coordinate of the door, and the X coordinate of the door.

7. OnUsing – this triggers a conversation as soon as a Use trigger at a defined space on
the battlefield is tripped. It takes two parameters: the Y coordinate of the trigger, and the
X coordinate of the trigger.
• Note: if a conversation is triggered in this way, the script attached to the Use trigger

will not automatically run; you'll need to run it manually from within the dialog
instead if you want it to run.
♦ Usage example: OnUsing 8,4 will trigger the conversation when a Use or

Use Once trigger at the coordinates 8,4 is tripped.
8. OnGrab – this triggers a conversation as soon as a character grabs an item sack on the

battlefield. It takes up to five parameters: the name of the character that must grab the
item sack to trigger the conversation (if it can only be triggered by a particular
character), the team number of the character who must trigger the conversation (if it can
only be triggered by a character of a particular team), the sack's Y coordinate (if that
matters), the sack's X coordinate (if that matters), and the name of an item that the sack
must contain to trigger the conversation (if it can only be triggered by a sack containing
a particular item).
• Note: all of these parameters are optional! To have the game ignore team number or

sack Y or X coordinates, use -1; to ignore character name or item name, use -ANY-.
♦ Usage example: OnGrab -ANY-,0,-1,-1,Bandages will trigger the

conversation when any character from army 0 grabs an item sack anywhere on
the battlefield, just so long as the sack contains Bandages.

♦ Usage example: OnGrab Tremolo Phalanges,-1,-1,8,-ANY- will trigger the
conversation when Tremolo Phalanges grabs any item sack that is 8 spaces from
the left edge of the map.

9. OnCharAttacked – displays some dialog right before an attack is executed. This takes
either two or three parameters, depending on whether you want to trigger dialog when a
specific named character is attacked, or when a class of character or object is attacked.
To trigger dialog when a unique, named character is attacked, use two parameters: turn
number and character name, including spaces. (This is what you'll use for boss taunts:
“You think you can hurt me? Laughable!” and such.) To trigger dialog when a certain
type of object is attacked, use three parameters: turn number, the word None, and the
triggering className. (If you want the dialog to trigger on any turn where the specified
character or class of character is attacked, make sure to use -1 for the turn number
parameter!)
• There are optional fourth and fifth parameters as well: attacker name (if you want

51

the conversation to only trigger if a certain character attacks the target); and non-
attacker names delimited by colons (the names of characters who will ensure this
dialog won't trigger if they are the ones to attack the target). You can use -ANY- for
the fourth parameter if it can be any character that attacks the target, subject only to
the exclusion list in the fifth parameter. You can also use -ANY- for the second
parameter if any character can be attacked to trigger the dialog.
♦ Usage example: OnCharAttacked -1,None,Chair will trigger the

conversation as soon as a player clicks to attack a chair (it doesn't matter which
chair); OnCharAttacked -1,General Vile will trigger the conversation as
soon as the player clicks to launch an attack against General Vile.

♦ Usage example: OnCharAttacked -1,-ANY-,,Sarn Kamina will trigger the
conversation as soon as any character is attacked by a character named Sarn
Kamina.

♦ Usage example: OnCharAttacked -1,General Vile,,-ANY-,Sarn
Kamina:Emma Strider will trigger the conversation as soon as a character
named General Vile is attacked by anyone other than Sarn Kamina or Emma
Strider.

10. OnCharDeath – this is what you'll use for death monologues: “Lo, I have been slain!”
and such. Takes either two or three parameters, depending on whether you want to
trigger dialog upon the death of a specific named character, or on the destruction of a
class of character or object. To trigger dialog on the death of a unique, named character,
use two parameters: turn number and character name, including spaces. To trigger dialog
on the destruction of an object, use three parameters: turn number, the word None, and
the triggering className. (If you want the dialog to trigger on any turn where the
specified character or class of character dies, make sure to -1 for the turn number
parameter!)
• There are optional fourth and fifth parameters as well: killer name (if you want the

conversation to only trigger if a certain character killed the target); and non-killer
names delimited by colons (the names of characters who will ensure this dialog
won't trigger if they are the ones to kill the target). You can use -ANY- for the fourth
parameter if it can be any character that kills the target, subject only to the exclusion
list in the fifth parameter. You can also use -ANY- for the second parameter if any
character can be killed to trigger the dialog.
♦ Usage example: OnCharDeath -1,None,Barrel will trigger the conversation

as soon as a barrel is destroyed; OnCharDeath -1,Jim Francis will trigger
the conversation as soon as the character named Jim Francis is killed.

♦ Usage example: OnCharDeath -1,General Vile,,Sarn Kamina will trigger
the conversation as soon as a character named General Vile is killed a character
named Sarn Kamina.

♦ Usage example: OnCharDeath -1,General Vile,,-ANY-,Sarn
Kamina:Emma Strider will trigger the conversation as soon as a character
named General Vile is killed by anyone other than Sarn Kamina or Emma
Strider.

11. OnLevel – this triggers a conversation when a character levels up. Takes two

52

parameters: the name of a character, and the level they must be reaching to trigger the
dialog. Use -ANY- for the first parameter if it applies to any character leveling up; and
use -1 for the second parameter if it doesn't matter what level they're reaching.

12. OnStat – takes four parameters: the name of a character, the name of a stat, a mode of
comparison, and a numerical amount. This checks to see if the value of the character's
stat falls within the range indicated by the mode of comparison and the amount; if it
does, the conversation is triggered. You can use -ANY- in lieu of the character name if
any character should be able to trigger the dialog. The stat name can be any of the stat
names listed under IfStatGoTo below. The comparison mode can be any of the
following:
• = (check for an exact match between stat value and amount)
• g (check if stat value is greater than amount)
• l (check if stat value is less than amount)
• g= (check if stat value is greater than or equal to amount)
• l= (check if stat value is less or equal to than amount)

♦ Usage example: OnStat Jim Francis,Level,=,20 will trigger the conversation
as soon as it detects that Jim Francis is level 20.

13. OnVal – takes three parameters: the name of a preexisting custom variable, a mode of
comparison, and a numerical amount. This checks to see if the value of the custom
variable falls within the range indicated by the mode of comparison and the amount; if it
does, the conversation is triggered. The comparison mode can be any of the following:
• = (check for an exact match between variable value and amount)
• g (check if variable value is greater than amount)
• l (check if variable value is less than amount)
• g= (check if variable value is greater than or equal to amount)
• l= (check if variable value is less or equal to than amount)

♦ Usage example: OnVal Reputation,g=,10 will trigger the conversation if it
detects that the custom variable Reputation exists and has a value of greater than
or equal to 10.

14. OnCharSelect – it can use up to two optional parameters: Turn Number and Character
Name, including spaces. If no parameters are specified, it will trigger the conversation
as soon as the player selects any character.

15. OnMoveComplete – it can use up to two optional parameters: Turn Number and
Character Name, including spaces. If no parameters are specified, it will trigger the
conversation the first time any character finishes moving to any space.

♦ Usage example: OnMoveComplete -1,Ghost Soldier will trigger the
conversation as soon as any character named “Ghost Soldier” finishes moving to
a new space; the -1 Turn Number value tells the game that this can happen on
any turn and still trigger the conversation.

16. OnAttackSelect – it can use up to three optional parameters: Turn Number; Character
Name, including spaces; and Attack Name. Use -1 if it doesn't matter which turn they
select the attack on, -ANY- if it doesn't matter which character selects the attack, or
-ANY- if it doesn't matter which attack they select. If no parameters are specified, it will
trigger the conversation as soon as any character selects any attack.

53

◦ Repetitions
1. By default, a conversation can only be triggered a single time per scene; after it's run,

the conversation will not trigger again.
2. To make a conversation repeatable, open up the XML file containing your dialog and

add an r attribute to the very first branch of the conversation. Set it to the number of
times you want the conversation to be able to repeat. If you want the conversation to be
repeated without limit, set r to any integer less than 1 (0, -1, etc.)

♦ Usage example: <Dialog branch="0" r="3"> will allow the player to trigger
that conversation up to three times during the scene.

◦ Name
1. By default, dialog branches do not have names. However, you can name particular

dialog branches for use with the NamedBranch reply type and BNAME[] special
character.

2. To name a dialog branch, open up the XML file containing your dialog and add a name
attribute to the branch you want named, then type a string between the quotation marks.

♦ Usage example: <Dialog branch="23" name="Accept Bribe"> will allow the
player to visit this dialog branch using the name Accept Bribe even if this
branch's position in the conversation changes due to later edits.

◦ Types of Script Actions
1. AddObjective – this adds a new objective to the current battle. AddObjective has one

parameter: the text of the new objective.
2. AddObjectiveReticle – this adds a visual indicator to whatever space you specify on

the battlefield. AddObjectiveReticle has three parameters: Y coordinate, X coordinate,
and Color in hexidecimal format.

♦ Usage example: AddObjectiveReticle 4,2,0xFFFFFF will place a white
objective reticle onto the battlefield 4 spaces from the top and 2 spaces from the
left.

3. AddAttackerPortrait – this adds the default character portrait of the current attacking
character to the screen. One parameter: facing (right or left).
• Note: this action only works in battles, and only when a character is in the middle of

attacking (as one will be with the OnCharDeath and OnCharAttacked triggers). If no
attacking character is found, no portrait will be shown.

4. AddPortrait – this adds a character portrait to the screen. AddPortrait has three
required parameters: Portrait Name, Portrait Filename, and Facing. Portrait Name can be
anything you want; this will be the word or phrase you use to move, flip, or remove the
portrait later; Portrait Filename must be the name of the image file, minus the .png file
extension (it will be loaded from Data > Characters > _Portraits); and Facing must be
either right or left, indicating the direction the character portrait will face.
• In addition to the required parameters, there are three additional, optional

parameters: Palette, Plus Y and Plus X. Palette can be set to any army color (for
available army colors, see Set Army Color in Conditions); if not set to any valid
army color, the portrait will use the Violet army palette. Plus Y and Plus X each take
an integer value; they shift the portrait's starting position the designated number of
pixels vertically and horizontally, respectively.

54

♦ Usage example: AddPortrait Sarn Kamina,Lizardman_F,right,Red,0,150
will load Lizardman_F.png as a new portrait under the name Sarn, and the
portrait will face right. It will be positioned 150 pixels to the right of its default
position.

5. AddSpeakerPortrait – this adds the default character portrait of the current speaking
character to the screen. One parameter: facing (right or left).
• Note: this action only works in battles, and only when the speaking character is

present on the battlefield. If no such character is found, no portrait will be shown.
6. AddStatus – this attempts to give a status effect to a named character. There are three

parameters: the Character's Name including spaces; the Status Effect to give; and the
Elemental Resistance that applies.
• Note: to have a status effect take hold automatically without checking character

resistance, use AutoAdd as the string value for the elemental resistance parameter.
• You can use any status effect in the game with this action; see the full list on pp. 12-

13.
♦ Usage example: AddStatus Claude Mann,Burning,Heat will check for a

character named Claude Mann—if it finds him, it will use his Heat resistance to
determine if he gains Burning status, just as if he were hit with a Heat attack.

♦ Usage example: AddStatus Claude Mann,Burning,AutoAdd will check for
a character named Claude Mann—if it finds him, he will gain Burning status
automatically regardless of his resistances.

7. AddStatusAt – this attempts to give a status effect to a character at a specified set of
battlefield coordinates; if it finds a character at those coordinates, it then checks to see if
the character gains the named status effect as if it it had been the target of a skill. There
are four parameters: the Y coordinate, the X coordinate, the Status Effect to give, and
the Elemental Resistance that applies.
• Note: to have a status effect take hold automatically without checking character

resistance, use AutoAdd as the string value for the elemental resistance parameter.
♦ Usage example: AddStatusAt 6,4,Burning,Heat will check for a character at

the coordinates 6 , 4—if it finds one, it will use the character's Heat resistance to
determine if he/she gains Burning status, just as if the character were hit with a
Heat attack.

♦ Usage example: AddStatusAt 6,4,Burning,AutoAdd will check for a
character at the coordinates 6 , 4—if it finds one, that character will gain Burning
status automatically.

8. AddTag – this adds a new character tag to a unique, named character or object on the
battlefield. There are at least two parameters: Character Name and Tag Type, plus an
extra parameter for each tag parameter required for use with that Tag Type. (See B.
Characters and Objects for more about tags.)

9. AddTagToArmy – this adds a new character tag to every character in a designated
army. There are at least two parameters: Army Number and Tag Type, plus an extra
parameter for each tag parameter required for use with that Tag Type. (See B.
Characters and Objects for more about tags.)

♦ Usage example: AddTagToArmy 1,Passive will cause all of army 1 to adopt

55

a passive AI approach.
♦ Usage example: AddTagToArmy 2,TargetValue,0.5 will halve the target

value of all characters in Army 2, making them less likely to be targeted for
skills and attacks by the computer AI relative to characters of other armies.

10. AddTextOverlay – this adds a text overlay at the top of the screen. There is one
parameter: the text to be contained in the overlay.
• Note: there is a second, optional parameter: number of frames that the text overlay is

to remain onscreen before automatically vanishing. If you use this parameter, delimit
it with a double colon (::), not a comma. If you do not use the second parameter, the
text overlay will remain onscreen until the turn ends or a second text overlay
replaces it.
♦ Usage example: AddTextOverlay Defeat General Vile! will cause a text

overlay to appear at the top of the screen with the text “Defeat General Vile!”
♦ Usage example: AddTextOverlay Warning: enemy approaching!::135 will

cause a text overlay to appear at the top of the screen with the text “Warning:
enemy approaching!” The text will automatically vanish after 135 frames (about
3 seconds).

11. AssignSpeakerAtCoords – this moves the camera to a specified set of battlefield
coordinates; if it finds a character at those coordinates, it then highlights that character
as if that character were the speaker. There are two parameters: the Y coordinate, and the
X coordinate.
• This is recommended for dialog among specific enemy characters without unique

names.
12. ChangeCharClass – this changes the class name used by the named character, as well

as changing its sprite. There are three parameters: the Character's Name, including
spaces; the name of the Class as it is displayed in the game; and the name of the Sprite
Sheets you want to start using.
• ChangeCharClass is used to accomplish unit class promotions, or for a more

dramatic class change. It will work only if the character is present on the battlefield!
♦ Usage example: ChangeCharClass Claude Mann,Paladin,Mantis Knight

will cause the character named Claude Mann to become a “Paladin” that uses
Mantis Knight sprite sheets.

13. ChangeCondition – any battlefield condition you can set with a condition tag, you can
change using this Action. Use the same parameters as you would defining the condition
initially.

♦ Usage example: ChangeCondition Weather,Rain will cause the map's
weather to change to rain.

♦ Usage example: ChangeCondition Fog of War,true will turn on fog of war.
14. CheckForMoreDialog – this checks for more dialog queued up, then ends the

conversation immediately if there isn't. (See the EndConvImmediately action below;
compare with the reply type by the same name.) No parameters.
• CheckForMoreDialog is used with character death monologues, since multiple

characters with their own death monologues can suffer mortal wounds in a single
attack.

56

15. ClearInv – removes all items from a character's inventory. There is one parameter: the
Name of the Character whose inventory you want to clear, including spaces.

16. ClearLevelUpAttacks – clears all attacks that a character is set to learn upon leveling
up in the future. There is one parameter: the name of the character whose list of level-up
attacks you want to clear, including spaces.

17. ClearObjectiveReticle – this removes the objective reticles (see
AddObjectiveReticle) from whatever space you specify on the battlefield.
ClearObjectiveReticle has two parameters: Y coordinate and X coordinate.

18. ClearPortraits – this removes all character portraits from the screen. No parameters.
19. DamageChar – this deals damage directly to a named character. The three parameters

are: Character Name, Damage Amount, and Element (Slash, Pierce, Heat, Cold, etc.) If
you don't want the character's resistance to certain elements to impact the total damage
they receive, just use something that isn't a normal element for the third parameter, like
“Banana” or something.

20. DamageCharAt – this deals damage directly to a character at specific coordinates.
Exactly like DamageChar, but instead of using a character name, it uses coordinates.
Four parameters: Y coordinate, X coordinate, Damage Amount, and Element.

♦ Usage example: DamageCharAt 4,12,10,Banana will deal 10 base Banana
damage to whatever character is 4 rows down from the top of the map and 12
columns right of the left side of the map. Because “Banana damage” is not a
thing in Telepath Tactics, the damage will not be resisted.

♦ Usage example: DamageCharAt -Y-,-X-,8,Pierce will deal 8 base Pierce
damage (i.e. damage that will be reduced by the target's Pierce Resistance) to
whatever character triggered the dialog or script, since the game will just fill in
that character's coordinates due to the use of -Y- and -X-.

21. DelArr – this deletes an entry in a custom array, causing all of the entries after it in the
chosen array to collapse forward one position. DelArr uses two parameters: Array Name
(a string: the name of the array to delete an entry from), and Delete from Position (front,
end, all, or a specific integer reflecting the position of the entry to delete).

22. DismissChar – this removes a character from the player's army roster. There is one
parameter: the name of the character to dismiss, with a colon delimiting the first and last
name. (Make sure you use a colon and not a space!)
• The reason the name is delimited here rather than typed out with spaces is because

the game looks directly into the CharClasses.xml file when it spawns characters on
your team; where you see a forward slash separating character names in the
CharClasses.xml file, just use a colon instead.
♦ Usage example: DismissChar Claude:Mann will cause the character named

Claude Mann to be removed from the player's army roster.
23. EndBattle – immediately take the player to the victory screen.
24. EndConvImmediately – this is a very important action with a very specific purpose:

it allows you to run scripts without ever displaying character dialog to the player!
EndConvImmediately closes the dialog screen immediately, without waiting for the
player to click. There are no parameters.
• If you ever want scripts to be run at the end of a conversation, after the player has

57

clicked the final reply, you must use a NewBranch reply and direct it to a dummy
dialog branch containing any actions you want to run, plus an EndConvImmediately
action.
♦ Usage example: Suppose we want to have a character leave the battlefield right

after the end of a conversation. We can't just use an EndConv reply and a
RemoveChar action on the last branch to accomplish this, since the action will
run as soon as the branch is reached, causing the character to leave prematurely.
Instead, we must add one extra branch with RemoveChar and
EndConvImmediately, then use a NewBranch reply to direct us there. From the
player's perspective, the character will leave and the conversation will end
simutaneously the moment he clicks!

25. EnemiesLeft – counts the enemies remaining on the battlefield for a particular army,
then automatically creates and sets a custom val named _EnemiesLeft equal to that
number. One parameter: army number (the number denoting the army whose enemies
the game must count).
• Optional second parameter: enemy army number (will limit the counting to only

characters belonging to that specific enemy army).
♦ Usage example: EnemiesLeft 0 will count how many enemies remain on the

battlefield for the player.
26. FadePortrait – causes a portrait to fade out or fade in. Has two parameters: Portrait

Name and Number of Frames. Portrait Name is just the Portrait Name you used when
running AddPortrait (this tells the game which portrait to flip). Number of Frames tells
the game how many frames to take fading the portrait in or out. There are two additional
optional parameters: Delay and Mode. Delay is the number of frames to wait before
beginning to fade the portrait in or out. Mode is either out or in; this specifies whether to
fade the portrait out or fade it in. (By default, portraits fade out with 0 frames of delay.)

♦ Usage example: FadePortrait Jim,45,10 will cause the portrait named Jim to
fade out over 45 frames (i.e. 1 in-game second) after waiting 10 frames.

♦ Usage example: FadePortrait Emma,30,0,in will cause the portrait named
Emma to go transparent and then fade in over the span of 30 frames.

27. FadePortraits – just like FadePortrait, but instead of acting on a specific portrait, it
causes all portraits to fade out or fade in at once. Has one parameter: Number of
Frames; this tells the game how many frames to take fading the portraits in or out. There
are two additional optional parameters: Delay and Mode. Delay is the number of frames
to wait before beginning to fade the portraits in or out. Mode is either out or in; this
specifies whether to fade the portraits out or fade them in. (By default, portraits fade out
and with 0 frames of delay.)

♦ Usage example: FadePortraits 90 will cause all portraits in the scene to
immediately begin fading out over the span of 90 frames (i.e. 2 in-game
seconds).

28. FlipPortrait – flips a right-facing portrait so it faces left, or vice versa. Has two
parameters: Portrait Name and X Offset. Portrait Name is just the Portrait Name you
used when running AddPortrait (this tells the game which portrait to flip). X Offset is an
optional parameter that repositions the portrait when it's flipped; you can use this to

58

avoid jarring results when flipping an uncentered portrait.
29. FlushDeathQueue – when a conversation is triggered by OnCharDeath, the

character(s) or object(s) whose death triggered the conversation will remain on the
battlefield. Use this action to remove any characters or objects queued up for death from
the battlefield.
• Note: do not use this action unless and until you are certain that any dying characters

involved in the conversation won't have any further lines of dialog!
30. ForArr – runs a for loop based upon a range of entries within a custom array. In each

step of the loop, it automatically runs GetArr to retrieve the current position in the array,
then runs a named script. ForArr has five parameters: Array Name; Start Position (front,
end, or a specific integer reflecting an entry position within the array); End Position
(front, end, or a specific integer reflecting an entry position within the array); Increment
By (an integer value by which to increment the current position at each step of the loop);
and Script Name (the name of the script to run at the conclusion of each step in the
loop).

31. GetArr – retrieves a specific entry within a custom array, then sets either the custom
string _ArrStr (if it's a string) or the custom value _ArrVal (if it's a value) equal to it.
GetArr has three parameters: Array Name (a string containing the name of the custom
array to retrieve the entry from), Get from Position (front, end, or a specific integer
reflecting the position of the entry to retrieve), and Get As (auto, STR, or VAL; if auto,
the game will make its best guess as to whether the entry is a string or a numerical
value).

32. GetCharsDist – finds the total distance in spaces between two characters, then sets a
custom val named _Dist equal to that number. Two parameters: Name of Character 1,
and Name of Character 2.

33. GetCharSpaceDist – finds the total distance in spaces between a character and a
chosen space on the battlefield, then sets a custom val named _Dist equal to that
number. Three parameters: the Name of the Character, the Y Coordinate of the space,
and the X Coordinate of the space.

34. GetItemValue – finds the itemValue of the named item, then sets a custom val named
_ItemValue equal to that number. One parameter: item name.

35. GiveExp – gives a named character a specified amount of experience points. There are
two parameters: the Character's Name, including spaces; and the Amount of Experience
points to give that character.
• If the character's experience points go over 100, the character will level up right then

and there.
• If the character is not present on the battlefield, nothing will happen using this

action.
36. GiveItem – spawns an item directly in the named character's inventory. There are two

parameters: the Character's Name, including spaces; and the Name of the Item to spawn.
If the item is equippable and you want the character to auto-equip the item, include a
third parameter value: equip. If you want to spawn the item in the Common Inventory
instead of in the inventory of a particular character, use Common Inventory as the value
of the first parameter.
• Note: if you call GiveItem during a static cut scene, it will not work unless you use

59

Common Inventory as the value of the first parameter.
♦ Usage example: GiveItem Common Inventory,Bandages will spawn

Bandages in the Common Inventory.
♦ Usage example: GiveItem Emma Strider,Steel Blade,equip will spawn a

Steel Blade in Emma Strider's inventory and equip her with it.
37. GoTo – immediately switch to a different branch in the conversation. There is only one

parameter: the Branch to Go to.
38. GoToLastBranch – immediately switch to whatever branch the player was at in the

conversation before the current branch. There is one optional parameter: Number of
Branches Back in the conversation history to travel.

39. IfGoneGoTo – switch to a different conversation branch if a certain named character
is not present on the battlefield. There are two parameters to the IfGoneGoTo action:
name of the character to check for, including spaces; and branch.
• Note: if this action returns true, the dialog will proceed to the named branch

immediately, skipping any remaining actions in this branch!
♦ Usage example: IfGoneGoTo Jim Francis,2 will switch the conversation to

branch 2 if the game detects that no character named Jim Francis is present on
the battlefield.

40. IfGoneRun – exactly like IfGoneGoTo, but runs a script instead of going to a new
branch. The parameters are identical to those in IfGoneGoTo except for the last, which
should be the name of the script to run instead of the branch to go to.
• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining

actions in the branch will still run.
41. IfItemGoTo – switch to a different conversation branch if a certain item is present in

one or more characters' inventories. There are four parameters to the IfItemGoTo action:
Name of the Character whose inventory the game will check, Name of the Item to check
for, whether the item Has to Be Equipped, and the Branch to Go to if the item is found.
• You can use Anyone for the character name parameter to have the game check the

inventories of every character in Army 0.
• Note: if this action returns true, the dialog will proceed to the named branch

immediately, skipping any remaining actions in this branch!
♦ Usage example: IfItemGoTo Jim Francis,Binoculars,false,2 will switch the

conversation to branch 2 if the game detects that Jim Francis is present on the
battlefield and has Binoculars in his inventory.

♦ Usage example: IfItemGoTo Anyone,Fire Sword,true,12 will switch the
conversation to branch 12 if the game detects that any character in Army 0 has a
Fire Sword equipped.

42. IfItemRun – exactly like IfItemGoTo, but runs a script instead of going to a new
branch. The parameters are identical to those in IfItemGoTo except for the last, which
should be the name of the script to run instead of the branch to go to.
• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining

actions in the branch will still run.
43. IfOnCoordsRun – checks to see if characters are on a particular space during a

conversation; if a match is found, the game runs a script. This action has four

60

parameters: Character Name, Y coordinate, X coordinate, and Script Name. If the named
character is at the battlefield coordinates you specified, the named script is run.
• Note: you can also specify NO_ONE for the first parameter, in which case the game

checks to see if the space is entirely empty--if it is, then the named script is run; or
ANY_ONE, in which case it'll count any character on the space.
♦ Usage example: IfOnCoordsRun NO_ONE,6,4,Spawn At 6 4 will run the

script named Spawn At 6 4 if it detects no characters on the space 6 down from
the top of the map and 4 right of the left edge of the map.

44. IfPathClearRun – checks to see if a character has a clear movement path to a
particular space during a conversation; if so, the game runs a script. This action has four
parameters: Character Name, Y coordinate, X coordinate, and Script Name. If the named
character has a path to the battlefield coordinates you specified, the named script is run.

♦ Usage example: IfPathClearRun Emma Strider,6,4,Move To 6 4 will run
the script named Move To 6 4 if it detects that the character named Emma Strider
has a clear path to move to the space 6 down from the top of the map and 4 right
of the left edge of the map.

45. IfStatGoTo – switch to a different conversation branch if one of a character's stats has
a certain value. There are five parameters to the IfStatGoTo action: Character Name
with spaces, Stat Name, mode of comparison, amount, and branch. Character name tells
the game whose stats to look at; stat name tells the game which stat to compare; mode of
comparison tells the game how to compare the stat's value to the amount; amount tells it
what to compare the custom variable to; and branch tells it which conversation branch to
switch to if the game finds a match.
• The comparison mode can be any of the following:

• = (check for an exact match between variable value and amount)
• g (check if variable value is greater than amount)
• l (check if variable value is less than amount)
• g= (check if variable value is greater than or equal to amount)
• l= (check if variable value is less or equal to than amount)

• The stat name can be any of the following:
• Army – the army number of the army the character belongs to (0 for the player's

army, 1 for the enemy, etc.)
• Level
• Exp - experience points.
• Damage - health lost.
• Health - current health.
• Max Health *
• Drain - energy below maximum.
• Energy - current energy.
• Max Energy *
• Strength *
• Psy Power *
• Psy Defense *
• Steps Left - steps remaining that character can move.

61

• Speed *
• Accuracy *
• Dodge *
• Counter Limit * - maximum number of counterattacks a character can perform

per turn.
• Perception * - spaces the character can see through fog of war.
• Pierce Res. *
• Slash Res. *
• Crush Res. *
• Mental Res. *
• Heat Res. *
• Cold Res. *
• Light Res. *
• Shadow Res. *
• Poison Res. *
• Done - 0 if a character can still act, 1 if it can't. (If it's another player's turn, then

this is a legacy value from the character's owner's last turn.)
• Attacked - 0 if character hasn't launched an attack of type "EndTurn" or

"CanMove" since start of character's last turn, and 1 if character has.
("Unlimited" and “UseOnce” attacks don't affect this stat.)

• Countered - number of counterattacks launched since start of character's last
turn.

• Y Coord
• X Coord
• MoveType – a string: use land, swimming or flying in lieu of the mode of

comparison parameter, and leave the amount parameter blank.
• Direction – a string: use Up, Down, Left, Right or None in lieu of the mode of

comparison parameter, and leave the amount parameter blank.
• Name – a string: use the character's full name (with spaces) to match against in

lieu of the mode of comparison parameter, and leave the amount parameter
blank.

• FirstName – a string: use the character's first name to match against in lieu of
the mode of comparison parameter, and leave the amount parameter blank.

• LastName – a string: use the character's last name to match against in lieu of
the mode of comparison parameter, and leave the amount parameter blank.

• Class – a string: use the character class to match against in lieu of the mode of
comparison parameter, and leave the amount parameter blank.

• Sprite – a string: use the sprite type to match against in lieu of the mode of
comparison parameter, and leave the amount parameter blank.

• Portrait – a string: use the portrait name to match against in lieu of the mode of
comparison parameter, and leave the amount parameter blank.

• Race – a string: use the race to match against in lieu of the mode of comparison
parameter, and leave the amount parameter blank.

• Sex – a string: use the sex to match against in lieu of the mode of comparison
parameter, and leave the amount parameter blank.

62

• For any stat listed above with an asterisk on the end, you can append BASE
with a space to the front of it to get the stat's base value (i.e. ignoring
temporary modifiers from items or other buffs).

• Note: if this action returns true, the dialog will proceed to the named branch
immediately, skipping any remaining actions in this branch!

♦ Usage example: IfStatGoTo Claude Mann,Strength,l,10,2 will switch
the conversation to branch 2 if it detects that the character named Claude
Mann is present on the battlefield and has a Strength of less than 10.

♦ Usage example: IfStatGoTo Claude Mann,BASE Strength,g,5,7 will
switch the conversation to branch 7 if it detects that the character named
Claude Mann is present on the battlefield and has a Strength greater than 5,
ignoring any items or other effects which may have given him a temporary
Strength boost / penalty.

♦ Usage example: IfStatGoTo Claude Mann,MoveType,swimming,,6 will
switch the conversation to branch 6 if Claude Mann's MoveType is
swimming.

♦ Usage example: IfStatGoTo Claude Mann,Class,Swordsman,,9 will
switch the conversation to branch 9 if Claude Mann's class is Swordsman.

46. IfStatRun – exactly like IfStatGoTo, but runs a script instead of going to a new
branch. The parameters are identical to those in IfStatGoTo except for the last, which
should be the name of the script to run instead of the branch to go to.
• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining

actions in the branch will still run.
47. IfStringGoTo – switch to a different conversation branch if a string custom variable

has a certain value. There are three parameters to the IfStringGoTo action: Variable
Name, String and Branch. Variable Name tells the game what custom string variable to
check; String tells it what to look for; and Branch tells it which conversation branch to
switch to if the game finds a match.
• Note: if this action returns true, the dialog will proceed to the named branch

immediately, skipping any remaining actions in this branch!
♦ Usage example: IfStringGoTo ChoseTraining,Mental,4 will switch the

conversation to branch 4 if it detects that the custom string variable
ChoseTraining is currently set to Mental. (See SetString.)

48. IfStringRun – exactly like IfStringGoTo, but runs a script instead of going to a new
branch. The parameters are identical to those in IfStringGoTo except for the last, which
should be the name of the script to run instead of the branch to go to.
• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining

actions in the branch will still run.
49. IfTagGoTo – switch to a different conversation branch if the named character has a

certain tag. There are four parameters to the IfTagGoTo action: Character Name with
spaces, Tag Name, Tag Parameters (if any), and Branch. The tag name can be anything
listed in Characters and Destructible Objects > Using Character Tags, or even
custom tags you've created yourself.
• Note: If you put in any text for the Tag Parameters parameter, this action will only

63

return true if the both the tag name and tag parameters all match.
• Note: if this action returns true, the dialog will proceed to the named branch

immediately, skipping any remaining actions in this branch!
♦ Usage example: IfTagGoTo Claude Mann,Promoted,,7 will switch the

conversation to branch 7 if the character Claude Mann has the Promoted tag.
50. IfTagRun – exactly like IfTagGoTo, but runs a script instead of going to a new branch.

The parameters are identical to those in IfTagGoTo except for the last, which should be
the name of the script to run instead of the branch to go to.
• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining

actions in the branch will still run.
51. IfValGoTo – switch to a different conversation branch if a numerical custom variable

has a certain value. There are four parameters to the IfValGoTo action: Variable Name,
Mode of Comparison, Amount, and Branch. Variable Name tells the game what custom
variable to compare; Mode of Comparison tells the game how to compare the variable's
value to the amount; Amount tells it what to compare the custom variable to; and Branch
tells it which conversation branch to switch to if the game finds a match. The
comparison mode can be any of the following:
• = (check for an exact match between variable value and amount)
• g (check if variable value is greater than amount)
• l (check if variable value is less than amount)
• g= (check if variable value is greater than or equal to amount)
• l= (check if variable value is less or equal to than amount)

• Note: if this action returns true, the dialog will proceed to the named branch
immediately, skipping any remaining actions in this branch!

♦ Usage example: IfValGoTo Money,l,100,2 will switch the conversation to
branch 2 if it detects that the custom variable Money exists and has a value of
less than 100. (See SetVal.)

52. IfValRun – exactly like IfValGoTo, but runs a script instead of going to a new branch.
The parameters are identical to those in IfValGoTo except for the last, which should be
the name of the script to run instead of the branch to go to.
• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining

actions in the branch will still run.
53. IfValsGoTo – this is exactly like IfValGoTo above, but it compares two custom

variables instead of comparing a single variable against a fixed value. There are four
parameters to the IfValsGoTo action: variable name, mode of comparison, second
variable name, and branch.
• Note: if this action returns true, the dialog will proceed to the named branch

immediately, skipping any remaining actions in this branch!
♦ Usage example: IfValsGoTo Money,g=,Cost,5 will switch the conversation

to branch 5 if it detects that the custom variable Money exists and has a value
greater than or equal to a second custom variable, Cost.

54. IfValsRun – exactly like IfValsGoTo, but runs a script instead of going to a new
branch. The parameters are identical to those in IfValsGoTo except for the last, which
should be the name of the script to run instead of the branch to go to.

64

• Note: unlike with the “GoTo” variant,” if this action returns true, the remaining
actions in the branch will still run.

55. ItemDrop – drops a single item sack onto a randomly chosen space on the battlefield.
Has one or more parameters: the Name(s) of the Item(s) contained in the item sack.
• Note: Just as with item drops which occur in multiplayer, the game will be more

likely to choose spaces that are closer to being midway between the armies' spawn
locations, and will not use spaces within a certain minimum distance of any
character's spawn point. If no suitable spaces exist, the item drop will not occur.

• Note: If you provide parameters that do not match existing item names, the game
will just select items at random from the full list of available items, weighted by
their commonality parameters.

56. KillChar – this kills the named character instantly. There is one parameter: the name
of the character to kill. (Compare with RemoveChar, below.)

♦ Usage example: KillChar Jim Francis will cause the character named Jim
Francis to die.

57. KillCharAt – this kills a named character at a specific set of coordinates instantly.
There are two parameters: Y coordinate and X coordinate.

♦ Usage example: KillCharAt 3,4 will kill whatever named character currently
occupies the space 3 rows down from the top and 4 columns right from the left
side of the battlefield.

58. LightBackground – lights the background picture in a static cut scene (see Section H
below). Has one parameter: Lighting Preset. This tells the game how to light the portrait;
you can use any of the same presets that are used with the Global Lighting condition.
• Note: If you leave the parameter blank (or use "Custom" for it), you can use optional

second, third, and fourth parameters: Red, Green, and Blue values for custom
lighting. This works just the same as with the Global Lighting condition.

59. LightPortrait – lights a portrait with global lighting. Has two parameters: Portrait
Name and Lighting Preset. Portrait Name is just the Portrait Name you used when
running AddPortrait (this tells the game which portrait to light). Lighting Preset tells the
game how to light the portrait; you can use any of the same presets that are used with the
Global Lighting condition.
• Note: If you leave the second parameter blank (or use "Custom" for it), you can use

optional third, fourth, and fifth parameters: Red, Green, and Blue values for custom
lighting. This works just the same as with the Global Lighting condition.

60. Lock – this looks for a door at a specified set of battlefield coordinates; if it finds a
door at those coordinates, it closes and locks it. There are two parameters: the Y
coordinate, and the X coordinate.

61. LoseBattle – immediately take the player to the defeat screen.
62. MoveCam – instead of focusing on the speaker, this moves the camera to a specified

set of battlefield coordinates during a given branch of dialog. There are two parameters:
the Y coordinate, and the X coordinate. There is also an optional third parameter, Frames
—a positive integer telling the game how many frames it should take to move the
camera to its destination. (By default, it's 30 with this action.)

♦ Usage example: MoveCam 5,8 will focus the camera on the space 5 rows

65

down from the top and 8 columns right from the left side of the battlefield, and
take 30 frames to do it.

♦ Usage example: MoveCam 5,8,90 will focus the camera on the space 5 rows
down from the top and 8 columns right from the left side of the battlefield, but
will take 90 frames to do so.

63. MoveChar – this moves the named character to coordinates of your choice. There are
three parameters: the Name of the Character to move, including spaces; the Y coordinate
to move to; and the X coordinate to move to.

♦ Usage example: MoveChar Jim Francis,5,8 will cause the character named
Jim Francis to automatically move from his current position to the space 5 rows
down from the top and 8 columns right from the left side of the battlefield.

64. MoveDialogBox – This repositions the dialog box vertically onscreen. It takes one
parameter, Number of Pixels to move the dialog box.

65. MovePortrait – this moves a character portrait across the screen. MovePortrait has
four required parameters: Portrait Name, Y to Move, X to Move, and Number of
Frames. Y to Move determines the number of pixels to move vertically; X to Move
determines the number of pixels to move horizontally; and Number of Frames is how
many frames the portrait should take to complete moving.

66. NewScene – this immediately jumps to a new battle or cut scene. It has one parameter:
the Name of the Scene to jump to (minus the .xml extension).

67. NextScene – this immediately jumps to the battle or cut scene specified in the current
scene's nextbattle attribute. No parameters.

68. OpenInv – this opens the Common Inventory menu. It has one parameter: the name of
the character currently accessing the Common Inventory. (If you want to display the
entire team for purposes of swapping items into and out of the Common Inventory, use
WHOLE_TEAM for the parameter value.)

69. PlayAnim – has a named character play a specified animation. There are two
parameters: the Character's Name, including spaces; and the Name of the Animation.
• If the character is not present on the battlefield, nothing will happen using this

action. If the character is present but does not have the named animation, the
character will play his or her default skill animation instead.

70. PlayLoop – this plays a looping sound effect when the conversation reaches the
current branch of dialog. There is one parameter: the name of the sound loop to play.
• Use None as the parameter to silence any loops currently playing.

♦ Usage example: PlayLoop Crowd will play the Crowd sound loop.
71. PlayMusic – this silences the music currently playing and begins playing a new track

of your choice. There is one parameter: the name of the musical track to play.
• Note: to simply silence whatever music is playing, use None as the parameter.

♦ Usage example: PlayMusic TacticiansDuel will silence the current music
track and begin playing the song “Tacticians' Duel.”

♦ Usage example: PlayMusic None will silence the current music track without
playing any other music.

72. PlaySound – this plays a one-shot sound effect when the conversation reaches the
current branch of dialog. There is one parameter: the name of the sound file to play,

66

minus the mp3 extension. There is also a second, optional parameter: a string to tag the
sound with so that the sound may later be interrupted with the StopSound script action.

♦ Usage example: PlaySound menuSelect will play the menuSelect.mp3 file
within Data > Sounds.

♦ Usage example: PlaySound scene1VoiceOver21,Voice Acting will play the
scene1VoiceOver21.mp3 file within Data > Sounds, and tag it as “Voice Acting”
so that it may be stopped with StopSound.

73. RecruitChar – this adds a new character to the player's army roster. There is one
parameter: the name of the character to recruit, with a colon delimiting the first and last
name. (Make sure you use a colon and not a space!)
• The reason the name is delimited here rather than typed out with spaces is because

the game looks directly into the CharClasses.xml file when it spawns characters on
your team; where you see a forward slash separating character names in the
CharClasses.xml file, just use a colon instead.
♦ Usage example: RecruitChar Jennifer:Faust will cause the character named

Jennifer Faust to be added to the player's army roster.
74. RemoveChar – this removes the named character from the battlefield. There is one

parameter: the Name of the Character to remove.
• Characters removed with a RemoveChar action are not considered dead; they have

merely left the battle, like actors obeying a direction to “Exit Scene.” (Compare with
KillChar, above.)
♦ Usage example: RemoveChar Jim Francis will cause the character named

Jim Francis to leave the battle.
75. RemoveCharAt – if a character is found at the coordinates specified, that character is

removed from the battlefield (see RemoveChar above). There are two parameters: the Y
coordinate, and the X coordinate.

♦ Usage example: RemoveCharAt 5,8 will cause any character or object on the
space 5 rows down from the top and 8 columns right from the left side of the
battlefield to leave the battle.

76. RemoveConv – removes the named conversation from the game's memory; it cannot
be triggered again during this scene. The number of parameters varies: the first is always
the Type of Trigger used by the conversation to be removed, and the others are its
Trigger Parameters.

77. RemoveCurrConv – removes the current conversation from the game's memory; it
cannot be triggered again during this scene. No parameters.

78. RemoveGlow – removes the selection glow from whatever character currently has it.
There are no parameters.

79. RemoveItem – unequips and removes an item from the named character's inventory.
There are two parameters: the Character's Name, including spaces; and the Inventory
Position of the item to remove. If you want to remove the item from the Common
Inventory instead of in the inventory of a particular character, use Common Inventory as
the value of the first parameter.
• You can see the numerical position of an item by looking at a character's inventory:

the item in the top-left is at position 0; the item to its right is at position 1; and so on.

67

• Note: if you call RemoveItem during a static cut scene, it will not work unless you
use Common Inventory as the value of the first parameter.
♦ Usage example: RemoveItem Jim Francis,0 will remove the very first item

found in Jim Francis's inventory.
80. RemoveItemByName – exactly like RemoveItem, but takes the Item Name instead of

inventory position for its second parameter. This action always removes the first item by
that name that it finds in the character's inventory. If you want to remove the item from
the Common Inventory instead of in the inventory of a particular character, use
Common Inventory as the value of the first parameter.
• Note: if you call RemoveItemByName during a static cut scene, it will not work

unless you use Common Inventory as the value of the first parameter.
♦ Usage example: RemoveItemByName Jim Francis,Bandages will remove

the first item named “Bandages” that appears in Jim Francis's inventory.
81. RemoveObjective – this removes an existing objective from the current battle.

RemoveObjective has one parameter: the text of the objective to remove. (If the text is
not an exact match, the objective won't be removed.)
• Note: you can use -ALL- for this action's parameter to remove all existing objectives

from the battle.
82. RemoveObjsAt – remove all destructible objects (including bridges) found at the

coordinates specified. There are two parameters: the Y coordinate, and the X coordinate.
83. RemovePortrait – this removes a character portrait to the screen. RemovePortrait has

one parameter: Portrait Name (this must be identical to the name you used when you
added the portrait with AddPortrait).

84. RemoveReply – this removes a reply option from a particular branch within the
current conversation. Two parameters: Reply Text, and Branch Number. For this action,
delimit the parameters with a double colon (::) instead of commas.

♦ Usage example: RemoveReply Want to buy my sword?::12 will look for
the reply in branch 12 of the current conversation using the text “Want to buy my
sword?” If it finds this reply in branch 12, it will remove it from that branch.

85. RemoveSpawn – this prevents a character from spawning on a future turn (but only if
said character is going to spawn by virtue of having been painted onto the map; this will
not prevent a SpawnChar action from triggering). There is one parameter: the name of
the character to keep from spawning.
• Note: this only works to keep a character from spawning on a future turn. If you use

this action on a character who has already spawned, it will not remove them from the
battlefield!

• You may use optional second and third parameters, Y Coordinate and X Coordinate,
denoting the particular space the named character is due to spawn on. This will help
the game find the right character if the character's name is shared by other units.

• You may use an optional fourth parameter, Turn to Spawn On, denoting the
particular turn when the named character is due to spawn. This will help the game
find the right character if the character's name is shared by other units.
♦ Usage example: RemoveSpawn Bloodbeard's:Bandit,1,2,5 will look for the

character named Bloodbeard's Bandit who is scheduled to spawn at y coordinate

68

1 and x coordinate 2 on turn 5, and then ensure that he does not spawn.
86. RemoveTag – this removes a character tag from a unique, named character or object

on the battlefield. There are two parameters: Character Name and Tag Type. (See B.
Characters and Objects for more about tags.)
• Note: Optionally, you can also include parameter values as additional parameters if

the tag type uses parameters and you want to specifically remove the tag with those
parameter values.

87. RemoveTagFromArmy – this removes a character tag from every character in a given
army. There are two parameters: Army Number and Tag Type. (See B. Characters and
Objects for more about tags.)

88. RemoveTagFromCharAt – this removes a character tag from a character at particular
coordinates on the battlefield. There are three parameters: Y Coordinate, X Coordinate
and Tag Type. (See B. Characters and Objects for more about tags.)
• Note: Optionally, you can also include parameter values as additional parameters if

the tag type uses parameters and you want to specifically remove the tag with those
parameter values.

89. RemoveTextOverlay – this removes any text overlay present on the screen. There are
no parameters.
• Note: Text overlays are removed automatically at the end of a player's turn. This

action is only for instances where you want the text overlay to go away in the middle
of a turn.

90. RemoveTrigger – Takes two parameters: Y Coordinate and X Coordinate. Removes
all triggers from all objects found at those coordinates. (See Triggers within Section G,
Maps, below.)

91. RotateChar – this rotates the named character to face a direction of your choice.
There are two parameters: the name of the character to rotate, including spaces; and the
direction to face. The following are available directions you can use:
• Up
• Down
• Left
• Right

♦ Usage example: RotateChar Jim Francis,Right will cause the character
named Jim Francis to face right.

92. RotateCharToFace – this rotates the named character to face another character of
your choice. There are two parameters: the name of the character to rotate, including
spaces; and the character to face.
• This action is useful for making characters talk to one another when you cannot be

certain of their positions ahead of time (e.g. because the conversation doesn't occur
on turn 0). It is recommended that you use RotateCharToFace instead of RotateChar
in most situations where characters face toward one another.
♦ Usage example: RotateChar Jim Francis,Claude Mann will cause the

character named Jim Francis to face Claude Mann, regardless of where each
character is on the battlefield.

93. RotateCharTowardPoint – this rotates the named character to face a spot on the

69

battlefield. There are three parameters: the name of the character to rotate, including
spaces; the Y Coordinate of the spot to face; and the X Coordinate of the spot to face.

94. Run – runs a script. Run takes only one parameter: the name of the script to run.
95. ScoreBonus – affect a player's bonus points for purposes of determining the player's

score at the end of the battle. There are two parameters to the ScoreBonus action: Army
Number and Amount. The Amount will be added directly to that player's bonus points.
To penalize a player's score, simply use a negative number for the Amount.

96. SetArr – alter the contents of an array entry if it exists; add the entry if it doesn't; and
also create the array if the named array doesn't yet exist. There are three parameters to
the SetArr action: Array Name (a string with the name of the array you want to edit an
entry in/add an entry to); Add at Position (front, end, or a specific integer reflecting the
position of an existing entry to overwrite); and the string or value to use for the entry.

97. SetSeed – set the seed that the game uses for random number generation to a specific
value. One parameter: the number you want to set the seed to. (This can be used to
manage transitions between persistent procedurally generated scenes.)

98. SetStat – alter the value of a character's stat. There are four parameters to the SetStat
action: Character Name with spaces, Stat, Operation, and Amount.
• The amount must be an integer; the operation to be performed with the amount can

be any of the following:
• = (make variable equal to amount)
• + (add amount to variable)
• - (subtract amount from variable, with results constrained to 0 or higher)
• -- (subtract amount from variable, with negative results allowed)
• * (multiply variable by amount)
• / (divide variable by amount; the result will be rounded to the nearest integer

value)
• % (multiply variable by amount as a percentage; the result will be rounded to the

nearest integer value)
• The Stat can be any of the stat types supported by IfStatGoTo above except for

Health and Energy—use Damage and Drain instead to affect a character's current
health and energy stats.

• In addition, SetStat supports the Name stat.
• To edit string stats (Name, Class, Sprite, Portrait, Sex, Race, Direction, or

MoveType), add a fifth parameter with the replacement name (delimited by a colon),
the replacement portrait name (minus the .png file extension), the replacement class
name, the replacement sprite name, the replacement sex, the replacement direction
(Up, Down, Left, Right or None), or the replacement movement type (flying or land).
The operation and amount parameters must still be present, but it doesn't matter
what they say in this instance.

• In addition to changing ordinary character stats, SetStat can also be used to change a
character's leveling behavior.
♦ To change the likelihood of a character gaining points in a certain stat on level

up, use the normal stat name with LVL and a space in front. (Instead of Strength,
for instance, you'd use LVL Strength.)

70

▫ This can be used to affect any of the stats normally found in a character's
OnLevelUp tag within CharClasses.xml.

♦ To queue up a new attack for a character to learn at a certain level, use
AttackToLearn as the Stat parameter, the attack's name for the Operation
parameter, and the level at which the attack is to be learned for the Amount
parameter.

• Note that any modifications you make with SetStat are permanent, and will affect
the character going forward in the campaign. (This does not apply to Damage, Drain,
Done, Attacked, Countered, or Steps Left.)
♦ Usage example: SetStat Jim Francis,Strength,%,150 will look for the

character named Jim Francis; if he is found on the battlefield, the game will
permanently increase his Strength stat to 150% of its current value.

♦ Usage example: SetStat Jim Francis,Name,+,0,General:Francis will look
for the character named Jim Francis; if he is found on the battlefield, the game
will permanently change his name to “General Francis” (with the colon
separating his first and last name).

♦ Usage example: SetStat Jim Francis,LVL Max Health,+,1 will look for the
character named Jim Francis; if he is found on the battlefield, the game will
permanently increase the chance that his maximum health increases upon
leveling up.

♦ Usage example: SetStat Jim Francis,AttackToLearn,Mind Blast,8 will
look for the character named Jim Francis; if he is found on the battlefield, the
game will make it so he learns Mind Blast upon reaching level 8.

99. SetStatByStat – alter the value of a character's stat by reference to another stat (either
from the same character, or from a second character). There are five parameters to the
SetStatByStat action: Character Name with spaces, Stat, Operation, Second Character
Name with spaces, and Second Stat.
• Note: this only works with numerical stats; string stats like MoveType or Class will

not work!
♦ Usage example: SetStatByStat Jim Francis,Strength,=,Emma

Strider,Strength will look for the character named Jim Francis; if he is found on
the battlefield, the game will permanently set his Strength stat equal to Emma
Strider's Strength stat.

100. SetStatByVal – alter the value of a character's stat by reference to the value of a
custom variable. There are four parameters to the SetStatByVal action: Character Name
with spaces, Stat, Operation, and Custom Variable name.
• Note: this only works with numerical stats; string stats like MoveType or Class will

not work!
♦ Usage example: SetStatByVal Jim Francis,Perception,+,OculoFavor will

look for the character named Jim Francis; if he is found on the battlefield, the
game will permanently increase his Perception stat equal to the custom variable
OculoFavor (which might, in turn, be a variable that tracks how much Oculo the
lensmaker likes the player).

71

101. SetString – alter the value of a string custom variable if it exists, or create the variable
if it doesn't. There are two parameters to the SetString action: Variable Name and String.
The String can be any word or phrase you wish.

♦ Usage example: SetString AlliedWith,Imperials will set the custom string
variable AlliedWith to Imperials, perhaps to indicate that the player has chosen to
ally with the imperial faction in the game world. (If the AlliedWith variable didn't
already exist, this action creates it as well.)

102. SetStringByString – copy the string held in one custom string variable into another.
There are two parameters to the SetStringByString action: Custom Variable Name to
paste the string to, and Custom Variable name to copy the string from.

103. SetVal – alter the value of a numerical custom variable if it exists, or create the
variable if it doesn't. There are three parameters to the SetVal action: Variable Name,
Operation, and Amount. The amount must be an integer; the operation to be performed
with the amount can be any of the following:
• = (make variable equal to amount)
• + (add amount to variable)
• - (subtract amount from variable, with results constrained to 0 or higher)
• -- (subtract amount from variable, with negative results allowed)
• * (multiply variable by amount)
• / (divide variable by amount; the result will be rounded to the nearest integer value)
• % (multiply variable by amount as a percentage; the result will be rounded to the

nearest integer value)
• r (randomly select a positive integer between 1 and the named amount)

♦ Usage example: SetVal Money,+,100 will add 100 to the custom variable
Money; if there isn't any existing custom variable named Money, however, the
game will create that custom variable with a value of 0, then proceed with the
operation (in this case, setting its value to 100).

104. SetValByStat – alter the value of a custom variable by reference to a character stat.
There are four parameters to the SetValByStat action: Custom Variable name, Operation,
Character Name with spaces, and Stat.

♦ Usage example: SetValByStat IntimidationLevel,+,Emma
Strider,Strength will look for the character named Emma Strider; if she is found
on the battlefield, the game will add Emma Strider's Strength stat to the custom
variable IntimidationLevel.

105. SetValByVal – alter the value of a custom variable by reference to the value of a
second custom variable. There are three parameters to the SetValByVal action: Custom
Variable name, Operation, and Second Custom Variable name.

♦ Usage example: SetValByVal MerchantReputation,*,Money will multiply
the custom variable MerchantReputation by the value of the custom variable
Money. (If the player has 100 money, for instance, this would multiply
MerchantReputation by 100.)

106. ShakeScreen – this shakes the screen when the conversation reaches the current
branch of dialog. There are two parameters: the magnitude of the shaking and the length
of the shaking. Magnitude is a positive integer referring to the maximum number of

72

pixels the screen can be displaced with each frame of shaking; length is the number of
frames the screen will shake for.

107. ShowActionsMenu – no parameters. This causes the actions menu to appear onscreen
even though the conversation hasn't ended. This is primarily for use in tutorials.

108. ShuffleArr – randomize the order of the entries in a custom array. There is one
parameter to the ShuffleArr action: Array Name (a string with the name of the array you
want to randomize the entries within).

109. SpawnChar – this spawns a new character on the battlefield. There are five
parameters: the team number; the name of the character to spawn, with a colon
delimiting the first and last name; the Y coordinate to spawn on; the X coordinate to
spawn on; and the direction to face upon spawning.
• You may use an optional sixth parameter, Trigger: this functions just like triggers

that are added directly to a <Unit> tag within an individual map (see Section G
below), except that the trigger type and script name are delimited with a colon
instead of a comma.

• You may also use an optional seventh parameter, Tags: this functions just like tags
that are added directly to a <Unit> tag within an individual map (see Section G
below), except that the Add/Remove, Tag Name and Tag Parameters of each tag are
delimited with colons instead of commas, and individual tags are delimited with
double-colons (::).

• The team number for the player is always 0; the enemy's team number is always 1;
destructible objects always belong to team 99. Use these numbers for the first
parameter accordingly.

• The reason that the name is delimited here rather than typed out with spaces is
because the game is going to look directly into the CharClasses.xml file and
compare what you put here with the charname attribute of every character. Make
sure you use a colon and not a space in the second parameter!

• If you're spawning a destructible object, use its spritetype for the first parameter
instead—no colon and no spaces. Also, make sure to set its facing to None!
♦ Usage example: SpawnChar 0,Jennifer:Faust,11,5,Up will spawn the

character named Jennifer Faust on the player's team (team 0), facing up, on the
space 11 rows down from the top and 5 columns right from the left side of the
battlefield.

♦ Usage example: SpawnChar 1,Bandit:Swordsman,3,5,Down,,
Add:Passive::Add:LevelUp:2 will spawn a bandit swordsman on the enemy's
team (team 1), facing down, on the space 3 rows down from the top and 5
columns right from the left side of the battlefield. It will then add Passive and
LevelUp tags to the character.

♦ Usage example: SpawnChar 99,PressurePlate,3,5,None,Pressure:Trap will
spawn a pressure plate on the space 3 rows down from the top and 5 columns
right from the left side of the battlefield. Because it is a destructible object, it
does not “face” in any direction so far as the battle engine is concerned. The
optional sixth parameter gives it a Pressure trigger that will run the script named
Trap as soon as a character steps on it.

73

110. SpawnFloatingText – adds a short-lived animated text pop-up above a specified
character. There are four parameters: the text to use, the name of the character to add it
above, the color of the text in hexidecimal format, and the number of frames to delay the
text. (The third and fourth parameters are optional; if not added, the game will assume
that the text is yellow and that there is no delay.)
• Note: do not use commas in the text defined by the first parameter or the game will

glitch out.
111. SpawnFloatingTextAt – adds a short-lived animated text pop-up above a specified

character. There are five parameters: the text to use, the Y coordinate, the X coordinate,
the color of the text in hexidecimal format, and the number of frames to delay the text.
(The fourth and fifth parameters are optional; if not added, the game will assume that the
text is yellow and that there is no delay.)
• Note: do not use commas in the text defined by the first parameter or the game will

glitch out.
112. SpawnParticlesAt – adds a short-lived spray of particles to the battlefield at a location

you specify. There are three parameters: the Type of Particle to use, the Y coordinate,
and the X coordinate. Particles you can use for the first parameter include:
• Sparks
• Blood
• Wood
• Stone
• Water
• Spray
• Smoke
• Snow

113. SpawnRandomly – this is the same as SpawnChar, except that the location where the
character or object spawns is chosen randomly by the game. The game will pick a space
that is passable by non-flying characters, unoccupied by other characters, and free of
any non-bridge destructible objects. The parameters are the same as with SpawnChar,
but minus the X and Y coordinate parameters: team number; the name of the character
to spawn, with a colon delimiting the first and last name; the direction to face upon
spawning; trigger (optional); and tags (optional).
• Note: Unlike the ItemDrop action, SpawnRandomly does not enforce any sort of

minimum spawn distance away from other characters, so it is possible for characters
or objects to spawn right next to the player!

114. StopSound – this stops a one-shot sound effect that is currently playing. There is one
parameter: the tag of the sound to stop, supplied in the PlaySound action.

♦ Usage example: StopSound Voice Acting will immediately stop any and all
one-shot sound effects tagged “Voice Acting”.

115. TeachAttack – teach a character a new attack. The character gains that attack
permanently. There are two parameters: the Character's Name, including spaces; and the
Name of the Attack to gain.
• Note: this action can be used in a Static Cut Scene, but it will work only on

characters who have already appeared in at least one battle on the side of army 0.

74

You must delimit the character's first and last names with a colon if you use the
TeachAttack action in this context.

116. TeachAttackTemp – teach a character a new attack. The character gains that attack
only until the end of the battle. There are two parameters: the Character's Name,
including spaces; and the Name of the Attack to gain.

117. TransferChar – this removes a character from any existing army rosters where it may
appear, then if the character was found and removed successfully, it then adds that
character to a specific army roster. (In essence, this lets you switch characters between
armies while keeping characters who have suffered permadeath dead.) There are two
parameters: the Name of the Character to transfer, with a colon delimiting the first and
last name; and the Roster Number for the army to transfer that character to if the
character is found alive.

♦ Usage example: TransferChar Jennifer:Faust,1 will cause the game to
remove the character named Jennifer Faust from any existing army rosters in
which she appears, then—if the game found her alive in an army roster—add her
to army roster 1.

118. Unlock – this looks for a door at a specified set of battlefield coordinates; if it finds a
door at those coordinates, it unlocks and opens it. There are two parameters: the Y
coordinate, and the X coordinate.

119. WhoCanUse – Gathers the names of all characters on the battlefield who can use a
particular item, then automatically creates and places their names into a custom string
named _WhoCanUse. One parameter: item name.

◦ Types of Replies
◦ Replies are used to control the flow of conversation, and can present the player with options

for responding to character dialog and prompts from the game. Note: if a branch has only a
single reply option, the reply will not be displayed; the game only displays the replies
individually where the player has a choice of responses (i.e. two or more available replies).
1. NextBranch – advances the conversation to the next consecutive branch (to branch 1

if on branch 0, to branch 5 if on branch 4, and so on). No parameters.
2. NewBranch – takes one parameter: branch number. Advances the conversation to the

branch specified in the parameter.
♦ Usage example: Nope. NewBranch 1 will move the conversation to branch

1. If there is more than one reply, it will display the text “Nope.”
3. EndConv – no parameter. Ends the conversation and returns to player control of the

battle.
♦ Usage example: Let's talk later. EndConv will end the conversation.

4. LastBranch – returns to a branch in the conversation that the player was on before the
current branch. By default, this just returns to the branch the player was on immediately
prior to the current branch. There is an optional parameter you can use with LastBranch,
however: number of branches to move back in the conversation.

♦ Usage example: Sorry, I'll ask a different question. LastBranch will move
the conversation back to the previous branch. If, for instance, the player got to
the current branch by clicking a reply in branch 3, then clicking this reply will
return to branch 3.

75

♦ Usage example: We've made a mistake; let's try again. LastBranch 4
will move the conversation back four steps. If, for instance, the player got to the
current branch by clicking a reply in branch 13, which he reached by clicking a
reply in branch 12, which he reached by clicking a reply in branch 8, which he
reached by clicking a reply in branch 5, then clicking this reply will return to
branch 5, four steps back (current branch > 13 > 12 > 8 > 5).

5. LastLastBranch – takes no parameters. Simply returns to two branches back in the
conversation.

6. LastLastLastBranch – takes no parameters. Simply returns to three branches back in
the conversation.

7. NamedBranch – takes one parameter: branch name. The game goes to the dialog
branch with a name attribute that matches it.

8. CheckForMoreDialog – no parameter. Checks to see if any other conversations are
queued up. If so, it moves straight to the next conversation; if not, it ends the
conversation a la EndConv. The same as the CheckForMoreDialog action, in essence,
but it activates upon clicking a reply rather than upon reaching a new branch.

9. EndTurn – no parameter. Ends the conversation, as well as the current player's turn.
10. EndBattle – no parameter. Ends the battle entirely, bringing up the normal splash

screen indicating that the player won.
11. LoseBattle – no parameter. Ends the battle entirely bringing up the normal splash

screen indicating that the player was defeated.
12. NextScene – no parameter. Ends the conversation and immediately loads whatever

scene is specified in the nextbattle attribute of the current map.
13. NewScene – takes one parameter: the name of the map to load next. Ends the

conversation and immediately loads the map specified in the parameter.
♦ Usage example: Then it's settled: we march north. NewScene

NorthernMarch will end the conversation and begin loading the map
NorthernMarch.xml. If there is more than one reply, it will display the text “Then
it's settled: we march north.”

E. Scripts
◦ If you're familiar with programming, a Script is basically a function; it is a bundle of dialog

actions grouped together under a single name. A script can be run during dialog simply by
referencing the name in a Run action. This makes it easy to create complicated effects that
can be referenced over and over again.

◦ Scripts can be created within an individual map, or in PersistentDialog.xml.
◦ Scripts use the <Script> tag, and contain <Action> tags just like dialog does.
◦ Instead of having a whole bunch of free-floating data lying around within the <Script> tags

identifying a speaker, dialog text, and so on, however, there is only one bit of text: the name
of the script. This is how this looks in practice:

♦ Usage example: <Script>Nightfall
 <Action>ChangeCondition/Global Lighting,Night</Action>
 <Action>ChangeCondition/Fog of War,true</Action>
 </Script>

creates a script named Nightfall that will impose dark global lighting on the level

76

and turn on fog of war.
F. Items

◦ To mod items, open up ItemClasses.xml in a text editor of your choice.
◦ Each item has the following properties, in order:

1. name – the item's name.
2. useableWith – this tells the game whether an item must be triggered, equipped, or

whether it takes effect automatically upon pickup. You can use “automatic” to make the
item trigger immediately on pickup, “triggered” to let the player use it manually, or you
can name one of the game's eight equipment slots if you want the item to be equippable
(in which case it will become equippable only in that slot). Alternatively, if you want to
make an item undroppable and unusable, select make it useableWith “quest”:
• automatic
• triggered
• Weapon Hand
• Off Hand
• Head
• Neck
• Torso
• Back
• Feet
• Accessory
• quest

3. requirements – this tells the game what characteristics a character has to possess before
he or she can either use or equip an item. There are three requirement types: race, class,
and level. An item may use any combination of these three.
• Race requirements – To create race requirements, type r, a colon, then the names of

every race that can use or equip the item, separated by commas. This will tell the
game that any of the named races (and only those races) may use the item.

• Class requirements – To create class requirements, type c, a colon, then the names of
every class that can use or equip the item, separated by commas. This will tell the
game that any of the named classes (and only those classes) may use the item.

• Level requirement – To create a level requirement, type l, a colon, then the
minimum required level to use or equip the item.
♦ Usage example:

requirements="r:Human,Spriggat/c:Swordsman,Fencer/l:6" will tell the
game that the item can only be used or equipped by a character that is a Human
or a Spriggat, that is either a Swordsman or Fencer, and that is level 6 or higher.

4. endsStatus – type in the name of a status effect you want the item to end. To end
multiple status effects, type in each status effect's name separated by a forward slash.
• NOTE: you can type all in lieu of specific status effects if you want the item to

remove every status effect on the character.
5. addsStatus – type in the name of a status effect you want the item to grant. To grant

multiple status effects, type in each status effect's name separated by a forward slash.
6. grantsAtk – type in the name of an attack you want the item to grant. To grant multiple

77

attacks, type in each attack's name separated by a forward slash.
• NOTE: attacks granted by triggered and automatic items will last for the remainder

of the battle. Attacks granted by equipped items will remain for as long as the item is
equipped.

7. consumedAfter – for triggered and automatic items, the maximum number of times an
item can be used before it will be fully consumed and vanish. For items useableWith
Weapon Hand, if this is set to any number above 0, that is the number of attacks the
weapon will last for. (Attacking with a weapon that has 1 use left will cause the weapon
to break.)
• To have weapons last forever, just leave consumedAfter set to 0.

8. itemValue – can be grabbed to set a custom value in the game using the GetItemValue
script action.

9. hpPlus – increase character's current health. (Negative numbers will damage character
health.)

10. pspPlus – increase character's current energy. (Negative numbers will damage character
energy.)

11. maxHPPlus – increase character's maximum health. (Negative numbers will damage
maximum character health.)

12. maxPsPPlus – increase character's maximum energy. (Negative numbers will damage
maximum character energy.)

13. spdPlus – increase character's current speed. (Negative numbers will lower character
speed.)

14. dodgePlus – increase character's current dodge percentage. (Negative numbers will
lower character dodge.)

15. strPlus – increase character's current strength. (Negative numbers will lower strength.)
16. perPlus – increase character's current perception. (Negative numbers will lower

perception.)
17. psyPPlus – increase character's current psy power. (Negative numbers will lower psy

power.)
18. psyDPlus – increase character's current psy defense. (Negative numbers will lower psy

defense.)
19. prcResPlus – increase character's current pierce resistance. (Negative numbers will

lower pierce resistance.)
20. slshResPlus – increase character's current slash resistance. (Negative numbers will

lower slash resistance.)
21. crshResPlus – increase character's current crush resistance. (Negative numbers will

lower crush resistance.)
22. mnResPlus – increase character's current mental resistance. (Negative numbers will

lower mental resistance.)
23. htResPlus – increase character's current heat resistance. (Negative numbers will lower

heat resistance.)
24. cdResPlus – increase character's current cold resistance. (Negative numbers will lower

cold resistance.)
25. ltResPlus – increase character's current light resistance. (Negative numbers will lower

light resistance.)

78

26. shResPlus – increase character's current shadow resistance. (Negative numbers will
lower shadow resistance.)

27. poiResPlus – increase character's current poison resistance. (Negative numbers will
lower poison resistance.)

28. accPlus – increase character's current base attack accuracy percentage. (Negative
numbers will decrease character attack accuracy.)

29. ctrLimitPlus – increase character's current counter limit. (Negative numbers will
decrease the character's counter limit.)

30. commonality – type a positive integer representing the item's commonality. The higher
the number, the more common it is.
• NOTE: in multiplayer, this directly impacts the probability of an item dropping in a

random item drop. In both multiplayer and single player, it also affects the likelihood
of an item appearing in the inventory of a character or object in place of an -R-
symbol; the higher the commonality value, the more likely it is to be randomly
selected. Similarly, it determines whether the item falls within the commonality
range of a targeted R[x-y] symbol. (For example: a chest with R[12-15] in its
inventory will spawn with a randomly selected item that has a commonality value
between 12 and 15.)

31. addsTags – tags to add to the character upon using or equipping the item. The game will
remove these tags from the character again upon unequipping the item (assuming that it
was an equipped item). Tags consist of the tag name; if the tag has any attributes, place a
comma between the tag name and its attributes, delimiting each attribute with a colon.
To add multiple tags, delimit each with a forward slash. Tags are discussed in more
detail in B. Characters and Destructible Objects below.

32. image – the filename of the item's icon, minus the .png file extension. This is used to
display the item graphically in the player's inventory. If the game can't find the named
image, it will display the name of the item instead.

33. description – the text description of the item as it appears in-game.
◦ In addition to all of the above, you can have items run a script by placing the name of the

script in between the Item tags. (The script, in turn, should probably be placed in
PersistentDialog.xml if you want it to work in all maps!)

♦ Usage example: <Item … >Gain25Coins</Item> tells the game to run the
script named Gain25Coins as soon as the item is used. If the item's useableWith
attribute is set to automatic, this will instead happen as soon as the item is picked
up.

G. Maps
◦ To edit maps, use the map editor.
◦ To add conditions to a map, see C. Conditions above.
◦ To add dialog and scripts to a map, see D. Dialog above.
◦ To add an objective to a map, open up the map in a text editor of your choice and create a

new <Objective></Objective> tag; then type the text you want the game to use within it.
♦ Usage example: <Objective>Protect the gates!</Objective> will cause the text

“Protect the Gates!” to show up in the Objectives window for this map.
◦ To add character tags to a character or destructible object within a map, open up the map

79

in a text editor of your choice. Within the chosen unit's <Unit> tag, add a tag attribute
followed by Add or Remove, a comma, and the tag (and any associated parameters) you
wish to add. To add or remove multiple tags, delimit each with a forward slash. Tags are
discussed in more detail in B. Characters and Destructible Objects above.

• Note: you must include Add, or Remove, before each character tag if you stick them
directly within <Unit>! You do not need to do this for character tags that are added
via CharClasses.xml or ObjClasses.xml.

◦ To add personalized custom lighting to a particular character or destructible object within
a map, open up the map in a text editor of your choice. Within the chosen unit's <Unit> tag,
add a lighting attribute with three parameters, each delimited by commas: Red, Green and
Blue values. These are just like the parameters in the lighting attribute assigned to
characters in CharClasses.xml and ObjClasses.xml: they are decimal numbers that can be
anywhere from 0 to 2.0, with 1.0 being 100% color value (0,0,0 will make the character
pitch black; 1.6,1.2,0.7 will make the character glow orange; and so on).

• Note: unlike the lighting attribute in CharClasses.xml and ObjClasses.xml, this only
affects the particular instance of the unit you assign it to, and it only lasts until the
end of the scene or battle.

◦ To add a trigger to a destructible object within a map, open up the map in a text editor of
your choice. Within the chosen unit's <Unit> tag, add a trigger attribute with two
parameters delimited by a comma: trigger type and the name of the script to trigger. There
are three acceptable trigger types:
1. Pressure – activates as soon as a character steps on it. Can be activated again later.
2. Use – activates as soon as a character uses it. Can be activated again later.
3. Use Once – activates as soon as a character uses it. Can only activate once.

♦ Usage example: <Unit
trigger="Use,UseSwitch">0,99,Switch,0,6,None,None</Unit> tells the game
to stick a Use trigger on a switch. It will run the script named UseSwitch when
activated. The switch can be activated an unlimited number of times.

◦ To add lighting to a map, open up the map in a text editor of your choice. Add a
<Light></Light> tag with the following properties in the middle.
1. Y coordinate
2. X coordinate
3. Red value (whole number, 0-255)
4. Green value (whole number, 0-255)
5. Blue value (whole number, 0-255)
6. Diameter (in number of pixels)
7. Intensity (any number between 0 and 1)
8. Flicker (currently does nothing; leave at 0)

♦ Usage example: <Light>0,5,120,220,255,80,0.3,0</Light> tells the game to
load the map with a light centered in the top row of the map, five tiles from the
left; that the light should be turquoise in color (Red: 120 Green: 220 Blue: 255);
and that it should be 80 pixels in diameter, rendered at 30% intensity.

◦ To add music to a map, just change what's written in the map's musictrack attribute.
Available music includes the following tracks:

80

1. BadOmen – forboding music anticipating danger.
2. BattlePrep – an upbeat military march.
3. CheckingOutTheGoods – bossa nova music for romance and casual shopping.
4. CityOfTheEmpire – music for a bustling city.
5. DeviousSchemes – high-stakes stealth music.
6. Dungeon – creepy music for exploring a dungeon.
7. EvilLurks – skin-crawlingly creepy music for deeply evil characters.
8. FinalBoss – epic battle music for the final boss.
9. ForHonor – battle music; the heroes are fighting for something greater!
10. FoulServants – boss music.
11. FrozenMemories – sad music; for defeat, or at touching or nostalgic moments.
12. HerosTriumph – joyous music for a great victory!
13. LizardTribe – jazzy tribal music with a digeridoo.
14. MythicalCreatures – mysterious music with tribal percussion.
15. Onslaught – battle music; standard battle theme.
16. Resolve – music indicating steely resolve in the face of adversity.
17. RightUnderTheirNoses – light-hearted stealth music.
18. ScionOfEvil – boss music.
19. ShadyTransactions – music for talking with mercenaries and arms dealers.
20. Sisters – sweet music; for times the characters reveal their feelings.
21. TacticiansDuel – battle music; alternate battle theme.
22. TavernTheme – an upbeat folk tune.
23. ThereWillBeBlood – forboding battle music; the calm before the storm.
24. TitleTheme – the Telepath Tactics theme song.
25. VibraMines – depressing, desolate music for the oppressed.
26. VillageTheme – gentle, peaceful music for a quiet village.

◦ To tell the game what scene to go to next after the battle is won, just change what's written
in the map's nextbattle attribute. Use the filename of the battle or cut scene you want to
load, minus the “.xml” extension.

• Note: to generate a random level, use GENERATE_RANDOM_LEVEL[]. Within
the square brackets, delimited by forward slashes, include the following parameters:

1. dungeon type – tells the game which rooms to use when building the level;
specifically, which subfolder within Maps > Generator Chunks to use. (If,
for instance, you've created a folder within Generator Chunks called Forest
with a bunch of rooms that are just grass and trees and bushes and such, and
you want the game to generate a level using those chunks, you'd use Forest
for this parameter.)

2. nextbattle – the name of the scene to go to once the level is successfully
completed (see above).

3. musictrack – the music to play for this level (see above).
4. number of floors – how many levels the generated dungeon should contain.

(Leave this at 1 for now.)
5. level size – a number representing both the width and height of each level;

room chunks are each 7x7, and so this parameter must be a multiple of 7 (e.g.
21 will produce 21x21 floors with space for up to 3 rooms on a side).

81

6. number of enemies – a range of enemies, with the lower bound and upper
bound delimited by a hyphen (e.g. 8-12 will cause the level to spawn
between 8 and 12 enemies).

7. level of enemies – a range of enemy levels, with the lower bound and upper
bound delimited by a hyphen (e.g. 1-3 will result in all enemies spawned
being between level 1 and level 3).

8. types of enemies – the names of all possible enemies that can spawn, with a
comma between first and last names, with each individual enemy delimited
by a colon (e.g. Bloodbeard's,Bandit:Bloodbeard's,Bowman:
Bloodbeard's,Healer will tell the game to choose from these three types of
enemies when populating the level).

9. conditions – all Conditions you want the level to have, from global lighting
to deployment. Delimit each condition's parameters using commas, as usual;
the conditions should each be separated by a colon (e.g. Global
Lighting,Cave:Protect Char,0,Lorenzo Llamas will set the level's lighting and
make it so the player has to keep the character Lorenzo Llamas alive).

10. seed – a number that is used to determine the exact configuration of the level
and the placement of all of its elements. Using the same number in concert
with the same parameters 1-9 will reliably generate the exact same level. If
you want the game to pick its own seed randomly, leave this last parameter
blank.

♦ Usage example: GENERATE_RANDOM_LEVEL[Ancient Dungeon/Exit
Cut Scene/Dungeon/1/30/10-14/2-6/Ancient,Ghost:Ruins,Bandit,:
Ruins,Swordsman/Global Lighting,Cave,] will cause the game to generate a
single 30 x 30-tile level using room chunks from the “Ancient Dungeon”
subfolder, lit with the “Cave” global lighting condition, playing the “Dungeon”
music track, containing between 10 and 14 enemies (a mix of Ancient Ghosts,
Ruins Bandits and Ruins Swordsmen) ranging in level from 2 to 6, and
proceeding to the scene Exit Cut Scene.xml upon completion. Since no number is
specified for the seed parameter, the game will randomly select its own seed.

H. Cut Scenes
◦ Cut scenes come in two varieties: Scrolling and Static.

1. Scrolling cut scenes feature text that scrolls from the bottom of the screen up to the
top across a black background. The scene ends when the text vanishes off the top of the
screen.

2. Static cut scenes are built in a slideshow format; the player clicks through a
succession of text and images. Static cut scenes also support character dialog.

◦ To create a cut scene, take a Map file and change the maptype attribute:
• to create a scrolling cut scene, use maptype="Cut Scene: Scrolling"
• to create a static cut scene, use maptype="Cut Scene: Static"

◦ Cut scenes use a few unique tags:
1. <Narration> – this is the central tag used in a cut scene; this defines the text that is

going to scroll up the screen (or appear in slides, in the case of a static cut scene).
• Within a static cut scene, divide the narration text into individual slides using a

82

double-forward slash. This, for instance, will create two slides:
♦ Usage example: This will be slide 1.//This is slide 2, and will appear after the

player clicks.
• You can embed a background picture in a static cut scene by including text with this

format: -PIC:Name of the picture-
♦ Usage example: -PIC:Title Screen- will make the game load Data >

Backgrounds > Title Screen.png as a background image starting with the slide
where this was placed.

• You can remove the background picture (i.e. make the area above the text go black)
by using -PIC:None- or -PIC:Clear- instead.

• You can also embed dialog in a slide within a static cut scene using this format:
-DIA:TriggerType/TriggerParameters-
Note that dialog will obscure any narrative text. Further, ending the conversation
will automatically advance the static cut scene to the next chunk. Thus, it is best to
avoid using narrative text in the same chunk as cut scene dialog.
♦ Usage example: -DIA:OnTurn/0- will cause the dialog with the OnTurn/0

trigger to begin.
2. <NewRoster> – include character names in forward-slash notation, delimited by

commas, to create the player's starting roster at the beginning of the game. If you use
this tag later in the game, it will replace the player's current roster with the named
characters.

♦ Usage example: <NewRoster>Gambino/Pelosi,James/Francis</NewRoster>
will create a new army roster consisting of the characters Gambino Pelosi and
James Francis.

3. <AddToRoster> – include character names in forward-slash notation, delimited by
commas, to add those characters to the player's current army roster.

♦ Usage example: <NewRoster>Jennifer/Faust</NewRoster> will add the
character Jennifer Faust to the player's army roster.

4. <RemoveFromRoster> – this works exactly like <AddToRoster>, only it removes
the named characters rather than adding them.

I. Tilesets
◦ To create a new tileset, go to the subdirectory Data > Tiles.
◦ Next, create a new folder within Tiles; name the folder whatever you want the name of your

new tileset to be.
◦ Create your tiles. You can use just about any paint program for this purpose; just make sure

the tiles are 64 x 64 .pngs.
◦ Drop your tiles into the folder you just created.

1. Tiles must all be 64 x 64 pixel .png files.
2. All tiles must be sequentially numbered in the following manner: tile0001.png,

tile0002.png, tile0003.png, etc.
◦ Once you have done this, open the map editor. It should auto-detect your new tileset!
◦ To make the tileset work in Telepath Tactics itself, however, you must do one more thing:

create a TileData.xml file for your tileset.
◦ First, copy-paste TileData.xml from the Blank tileset into your new tileset directory. Now

83

open it in a text editor of your choice.
◦ At the top you will see a line that looks like this:

<TileData setDir="app:/Tiles/Blank"> Replace the word Blank with the name of your
tileset. Make sure it matches the folder name exactly; if it doesn't, the game will fail to load
the properties of your tiles, which will lead to other errors in turn!

◦ Next, you should see a line that looks like this:
<Tile fileName="tile0001.png" passability="none" dmg="0" element=""></Tile>
You need to create one of these lines for every tile in your tileset. Each of these lines has the
following attributes:
1. fileName – this is the name of the .png file whose properties you're setting. Make sure

you do them in order!
2. passability – this determines which characters can move through a tile. Possible

settings are:
• none – this tile is treated like the inside of a solid wall.
• flying – only flying characters can pass (unless a bridge is placed on the tile).
• all – any character can pass.

3. dmg – this tells the game how much damage a non-flying character takes for
beginning its turn on this space. (For most spaces, this is 0.)

4. element – this tells the game the element of the damage the character takes. If a word
is used that doesn't represent an in-game element (e.g. Water) is used, the game will
ignore all resistances and deal the full amount of the damage to the character. If the
space deals no damage, leave this blank.

◦ In addition, any tile can have an additional attribute, right after element, called special. This
gives the tile a terrain effect that can impose one or more stat bonuses or penalties to any
character standing on it. For each stat to effect, use two values delimited by a comma: the
stat name and the amount that gets added to the stat (this can be a negative value if you want
it to be a penalty instead of a bonus). To affect multiple stats, delimit each with a forward
slash.

• special="Accuracy,25/Dodge,10/Resistance,10" , for example, would give
whatever character stands on that tile bonuses of 25 points to accuracy, 10 points to
dodge, and 10 points to each type of resistance for as long as the character remains
on that tile.

• For a list of the stats this can affect, see the Space Bonus condition above.
◦ Once you've finished filling out TileData.xml, your tileset will be good to go. Telepath

Tactics will automatically use it whenever it detects a map that uses the tileset.
◦ Note: if you want to distribute a map that uses a custom tileset, you have to distribute the

tileset as well, or the map won't load! To distribute your custom tileset, just stick the folder
in a .zip file and have other players unzip the tileset folder into Data > Tiles.

J. Destructible Object Sprites
◦ To create a new destructible object sprite, open up an image editor and create a new image

64 pixels wide with a transparent background.
◦ Draw the object sprite.
◦ Save the sprite in the subdirectory Data > Objects as a .png file.
◦ To use the sprite, set the spritetype property of a destructible object within ObjClasses.xml

to the filename you used, minus the .png file extension. (For instance: if you just created a

84

wooden carriage object sprite called Carriage.png, you'd use the spritetype Carriage to tie
it to a destructible object class.)

K. Shadow sprites
◦ This is exactly like creating a destructible object sprite, with one difference: the filename

must begin with Shadow.
◦ To use the shadow, set the shadowtype property of a character or destructible object to the

filename you used, minus the “Shadow” prefix and minus the .png file extension. (For
instance: if you just created a shadow sprite called ShadowDiamond.png, you'd use the
shadowtype Diamond to use the shadow with a character or object class.)

L. Character Sprites
◦ Characters use sprite sheets to animate. There are two basic kinds of character animations:

attack animations and non-attack animations. Attack animations have larger frames and
appear in a separate sub-directory, but otherwise behave the same way as non-attack
animations.

◦ Tools
• For creating sprite sheets, I strongly recommend Pyxel Edit or Graphics Gale. (You

could also use a free online editor like Piskel in a pinch.)
◦ File type

• As with destructible objects, you must use .png files with transparent backgrounds.
◦ Orientation

• Every character animation is organized into four rows, each representing a different
direction the character might be facing. From top to bottom, these are:

1. Down-facing
2. Left-facing
3. Up-facing
4. Right-facing

• In each row, the animation proceeds frame by frame from left to right until it reaches
the rightmost edge of the sprite sheet.

◦ Frame Dimensions
• Rest animation frames are 64 pixels wide and 112 pixels high.
• Walk animation frames are 96 pixels wide and 112 pixels high.
• Attack animation frames are 128 pixels wide and 112 pixels high.

♦ Walk animation frames are wider to account for the movement involved vis-a-vis
resting; and Attack animation frames are even wider to account for the more
dramatic movements involved in a physical attack.

♦ NOTE: The game automatically calculates the number of frames in an animation
by finding the width of the sprite sheet and dividing by the standard frame width
for that animation; the game also grabs each frame of the animation by reference
to the standard width, so it's very important that your frames be spaced correctly!
For the same reasons, it is also very important that every row contain the exact
same number of frames.

◦ Sprite Placement and Dimensions
• Characters should never be designed to be wider than 64 pixels or taller than 96

pixels when at rest.

85

http://www.piskelapp.com/
http://www.humanbalance.net/gale/us/
http://pyxeledit.com/

• In the rest sprite sheet, make sure that no part of the character protrudes into the top
16 pixels of the frame; if it does, it will get cut off.

• Standing upright, characters in Telepath Tactics are generally about 56-62 pixels tall
from the bottoms of their feet to the tops of their heads.

• With few exceptions, the character should be centered horizontally in each frame.
◦ Team Coloration

• The game interprets certain shades of violet as primary team colors. If you use
those shades of violet in your character sprites, the game will automatically palette
swap those colors to match the colors of whatever army the character belongs to.
♦ Colors with the following hex values will be auto-palette swapped to primary

team colors. From lightest to darkest:
1. 8760D2
2. 713FCF
3. 6D00FF
4. 5226BA
5. 2E1A6B
6. 1E183A

♦ Certain shades of lavender will also be palette-swapped to primary team color
variants. From lightest to darkest:
1. 9FA1D0
2. 9A85FF
3. 9183AF
4. 6C5A81

• The game interprets certain shades of red as secondary team colors.
♦ Colors with the following hex values will be auto-palette swapped to secondary

team colors:
1. C84C4C
2. B93C3C
3. 8A2E2E
4. 5E2121
5. 401717

◦ Number of Frames
• A Rest animation must be only 1 frame.
• A Walk animation should be exactly 8 frames and loop seamlessly.
• A Hurt animation should be roughly 5 frames.
• Attack animations should be at least 8 frames long.

♦ If the attack is a Move skill with moveType Teleport, it needs to be at least 12
frames long. No matter how long the animation is, the final 8 frames will always
be treated as the “reappearing” portion of the animation.

86

◦ Naming
• Each sprite sheet must obey the following naming convention:

SpriteType_AnimationType.png
♦ The “SpriteType” is a name that refers to a complete set of animations for a

given character. (This corresponds to the spriteType property used in character
classes; see Section B2 above.)

♦ For a non-attack animation, use one of the following for AnimationType:
1. Rest
2. Walk
3. Hurt

♦ For an attack animation, AnimationType should exactly match the name of the
attack--otherwise, it will have to be something like Cast, to be used with a
character's defaultAtkAnim property (see Section B12 above).

▫ Usage example: BronzeGolem_Walk.png tells the game that this sprite
sheet contains the movement animation for the BronzeGolem sprite type.

▫ Usage example: Crossbowman_Crossbow.png tells the game that this
sprite sheet contains the Crossbow attack animation for the
Crossbowman sprite type.

◦ Directory
• The game looks for animations in specific subdirectories. If your animation is in the

wrong folder, the game won't be able to find it!
• Non-attack animations reside in their own folders within Data > Characters.
• Attack animations reside in their own folders within Data > Characters > Attacks.
• Each folder name must exactly match the name used for the AnimationType.

♦ So, for example: let's say that you created a custom animation for a Swordsman
attack named BladeStorm. You'd need to save the sprite sheet as
Swordsman_BladeStorm.png, and you'd need to save it in Data > Characters >
Attacks > BladeStorm. If you decide to make this attack available to another
character that doesn't use the Swordsman sprite type, you'd change the filename
to reflect the new sprite type, but you would still save the new animation in Data
> Characters > Attacks > BladeStorm. Basically: it's the animation type that
determines the folder it goes in, not the sprite type.

M. Visual Effect Sprites
◦ Visual effects use sprite sheets to animate, much like characters do.
◦ File type

• As with destructible objects and characters, you must use .png files with transparent
backgrounds.

◦ Orientation
• Every visual effect animation is organized into four rows, each representing a

different direction the effect might be facing. From top to bottom, these are:
1. Down-facing
2. Left-facing
3. Up-facing
4. Right-facing

87

• In each row, the animation proceeds frame by frame from left to right until it reaches
the rightmost edge of the sprite sheet.

◦ Frame Dimensions
• Visual effect animation frames can be of any size, but they must always be perfectly

square (i.e. the height and width of each frame must always be equal). So you can
have a visual effect animation with 128 x 128 sized frames, or 64 x 64, or 32 x 32, or
even 8 x 8—but never, say, 128 x 96.
♦ NOTE: The game automatically calculates the number of frames in an animation

by finding the width of the sprite sheet and dividing by one fourth of the height
of the sprite sheet; the game grabs each frame of the animation by reference to
the that calculated frame width, so it's very important that your frames be spaced
correctly! For the same reasons, it is also very important that every row contain
the exact same number of frames.

◦ Sprite Placement and Dimensions
• With few exceptions, the visual effect animation should be centered both

horizontally and vertically in each frame, and should remain in that same spot in
every frame.

◦ Number of Frames
• A visual effect animation may be any number of frames in length.
• Bear in mind that if an animation is intended for use as a projectile, the length of the

animation will affect how long the projectile takes to travel to its target. A single
animation frame translates to 3 frames of travel time in the game's engine; it is
recommended that very fast-moving projectiles like arrows and crossbow bolts be
limited to a single frame.

◦ Directory
• The game looks for visual effects animations in a specific subdirectory: Data >

Characters > Attacks > _VFX.
N. Procedural Level Generator Room Sets

◦ When you use GENERATE_RANDOM_LEVEL, you aren't just limited to the types of
rooms that come with the game; you can make your own!

◦ To create a new type of procedurally generated level, create a new subfolder within Maps >
Generator Chunks. The name of this folder is what you'll use in the first parameter of
GENERATE_RANDOM_LEVEL if you want to create a level using this folder's chunks.

◦ Begin creating 7 x 7 square room chunks in the map editor, then save them in your new
subfolder.
1. You must have a chunk called Entrance.xml. This is the only room chunk that will

always be used when the game generates a level. Because it's the only one that's
guaranteed to be used, it should have spawn locations for the player's characters (i.e.
FromPlayerRoster, team 0). For the same reason, if there are any scripts or dialog that
you want to run every time a level of this sort is generated, you should stick them in
Entrance.xml.

2. In all other rooms, scatter FromPlayerRoster spawn locations for team 1 at every spot
where an enemy can potentially spawn; the game will select which of these to actually
spawn enemies in at random, based on how many enemies it is told to spawn in its

88

GENERATE_RANDOM_LEVEL instructions. The types of enemies it spawns,
likewise, will be determined based on GENERATE_RANDOM_LEVEL instructions.
• If there are room chunks that you want to have special scripted events or dialog, you

can stick the relevant Script and Dialog code within that room chunk. Be aware,
however, that the game will combine these with any scripts or dialog present in other
rooms it uses as well, so try to avoid duplicate dialog triggers!

◦ Finally, copy-paste the _Settings.xml file from one of the other Generator Chunks subfolders
into the new subfolder. Open the freshly copied file in an XML editor; you should see the
following six XML tags:
1. RoomsDensity – a number that determines how many rooms spawn relative to the

level's size. With a room density of 1, the game will spawn one non-entrance room for
every 7 squares of the level's dimensions; with a room density of 1.5, it will spawn 1.5
non-entrance rooms for every 7 squares of the level's dimensions (rounded to the nearest
whole number); with a room density of 2, it will spawn two non-entrance rooms for
every 7 squares of the level's dimensions; and so on.
• Usage example: <RoomsDensity>1</RoomsDensity> tells the game that in a level

with a level size of 21, there should be three rooms (21 divided by 7 = 3) in addition
to the entrance; that with level size 28, there should be four rooms (28 divided by 7 =
4) in addition to the entrance; and so on.

2. CorridorWidth – tells the game how many tiles wide the corridors connecting the
rooms should be.

3. FloorTile – tells the game what type of tile to use when generating the floors of
connecting corridors. (My advice would be to simply copy-paste this from a room chunk
xml file generated by the map editor.)

4. FloorTileset – tells the game which Tiles subfolder the first number in the FloorTile
references.
• Usage example: <FloorTileset>03,app:/Tiles/Dungeon</FloorTileset> tells the

game that every tile from set “03” resides in the Dungeon tiles subfolder. It is
strongly recommended that you simply copy this from the <Tileset> tag in your
rooms so that your tileset references remain consistent across the generated level.

5. WallTile – tells the game what type of tile to use when generating the downward-facing
walls of connecting corridors in an indoor level. Here, too, I'd advise copy-pasting this
from a room chunk xml file generated by the map editor.

6. WallTileset – exactly like FloorTileset, but for the WallTile.
O. Distributing a custom campaign

◦ To distribute a custom campaign, make sure your campaign files are in a single folder
bearing the name of your campaign.

◦ Your folder must contain the following:
1. a Data folder, which will contain any folders with custom assets that you're using in

your campaign (supported custom assets that you can distribute within the Data folder
include: destructible object sprites, character portraits, character sprites, sound effects,
item icons, and attack icons);

2. a Maps folder, which will contain all battles and cut scenes in your campaign;
3. AOEPatterns.xml;
4. Attacks.xml;

89

5. CharClasses.xml;
6. CharNames.xml;
7. ItemClasses.xml;
8. ObjClasses.xml;
9. PersistentDialogue.xml; and
10. Header.png, a 592 x 210 pixel image that will when your campaign is selected in the

New Campaign menu in-game:

◦ The Data folder should have the following subfolders for custom assets:
• Characters

♦ _Portraits – custom character portraits go in here.
♦ Attacks – custom character skill / attack animations go in their own folders in

here.
♦ Rest – custom character rest sprites go in here.
♦ Walk – custom character walk animations go in here.

• Objects – custom destructible object sprites go in here.
• Sounds – custom one-shot sound effects go in here (mp3 format).
• UI

♦ Button Icons – custom attack icons go in here.
♦ Item Icons – custom item icons go in here.

◦ Once you have everything in the right spot, zip your campaign folder and post it on the
Sinister Design forums for other users to download!

◦ To install a custom campaign that someone else created, just drop the folder into Documents
> My Games > Telepath Tactics > User Campaigns; the game should auto-detect this new
campaign when you visit the New Campaigns menu.

90

http://sinisterdesign.net/forum/index.php?board=38.0
http://sinisterdesign.net/forum/index.php?board=38.0
http://sinisterdesign.net/forum/index.php?topic=1396.0

P. Misc.

91

